Role of apolipoprotein C‐III overproduction in diabetic dyslipidaemia

To investigate how apolipoprotein C‐III (apoC‐III) metabolism is altered in subjects with type 2 diabetes, whether the perturbed plasma triglyceride concentrations in this condition are determined primarily by the secretion rate or the removal rate of apoC‐III, and whether improvement of glycaemic control using the glucagon‐like peptide‐1 analogue liraglutide for 16 weeks modifies apoC‐III dynamics.

[1]  J. Borén,et al.  Causes and Consequences of Hypertriglyceridemia , 2020, Frontiers in Endocrinology.

[2]  H. Ginsberg,et al.  Is APOC3 the driver of cardiovascular disease in people with type I diabetes mellitus? , 2019, The Journal of clinical investigation.

[3]  J. Borén,et al.  Dietary Fructose and the Metabolic Syndrome , 2019, Nutrients.

[4]  N. Lundbom,et al.  Liraglutide treatment improves postprandial lipid metabolism and cardiometabolic risk factors in humans with adequately controlled type 2 diabetes: A single‐centre randomized controlled study , 2018, Diabetes, obesity & metabolism.

[5]  E. Boerwinkle,et al.  Remnant-Like Particle Cholesterol, Low-Density Lipoprotein Triglycerides, and Incident Cardiovascular Disease. , 2018, Journal of the American College of Cardiology.

[6]  F. Agakov,et al.  Apolipoprotein CIII and N-terminal prohormone b-type natriuretic peptide as independent predictors for cardiovascular disease in type 2 diabetes. , 2018, Atherosclerosis.

[7]  K. Nakajima,et al.  Development of a Novel Homogeneous Assay for Remnant Lipoprotein Particle Cholesterol. , 2018, The journal of applied laboratory medicine.

[8]  P. Gordts,et al.  Apolipoprotein C-III in triglyceride-rich lipoprotein metabolism , 2018, Current opinion in lipidology.

[9]  A. Sahebkar,et al.  Effect of statin therapy on plasma apolipoprotein CIII concentrations: A systematic review and meta-analysis of randomized controlled trials. , 2018, Journal of clinical lipidology.

[10]  D. Drucker Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. , 2018, Cell metabolism.

[11]  I. Gouni-Berthold,et al.  APOC-III Antisense Oligonucleotides: A New Option for the Treatment of Hypertriglyceridemia. , 2018, Current medicinal chemistry.

[12]  E. Rimm,et al.  High-Density Lipoprotein Subspecies Defined by Presence of Apolipoprotein C-III and Incident Coronary Heart Disease in Four Cohorts , 2017, Circulation.

[13]  N. Lundbom,et al.  Adverse effects of fructose on cardiometabolic risk factors and hepatic lipid metabolism in subjects with abdominal obesity , 2017, Journal of internal medicine.

[14]  S. Young,et al.  Apolipoprotein C-III inhibits triglyceride hydrolysis by GPIHBP1-bound LPL[S] , 2017, Journal of Lipid Research.

[15]  A. Zwinderman,et al.  Apolipoprotein C-III Levels and Incident Coronary Artery Disease Risk: The EPIC-Norfolk Prospective Population Study , 2017, Arteriosclerosis, thrombosis, and vascular biology.

[16]  Michael Miller Apolipoprotein C-III: The Small Protein With Sizeable Vascular Risk. , 2017, Arteriosclerosis, thrombosis, and vascular biology.

[17]  J. Borén,et al.  Why Is Apolipoprotein CIII Emerging as a Novel Therapeutic Target to Reduce the Burden of Cardiovascular Disease? , 2016, Current Atherosclerosis Reports.

[18]  Richard G. Lee,et al.  ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors. , 2016, The Journal of clinical investigation.

[19]  G. Norata,et al.  Apolipoprotein C-III: From Pathophysiology to Pharmacology. , 2015, Trends in pharmacological sciences.

[20]  N. Lundbom,et al.  Kinetic and Related Determinants of Plasma Triglyceride Concentration in Abdominal Obesity: Multicenter Tracer Kinetic Study , 2015, Arteriosclerosis, thrombosis, and vascular biology.

[21]  A. Khera,et al.  Plasma Apolipoprotein C-III Levels, Triglycerides, and Coronary Artery Calcification in Type 2 Diabetics , 2015, Arteriosclerosis, thrombosis, and vascular biology.

[22]  F. Sacks,et al.  The risk of cardiovascular events with increased apolipoprotein CIII: A systematic review and meta-analysis. , 2015, Journal of clinical lipidology.

[23]  Alison B Kohan,et al.  Apolipoprotein C-III: a potent modulator of hypertriglyceridemia and cardiovascular disease , 2015, Current opinion in endocrinology, diabetes, and obesity.

[24]  F. Sacks The crucial roles of apolipoproteins E and C-III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia , 2015, Current opinion in lipidology.

[25]  S. Rajagopalan,et al.  Lipoprotein effects of incretin analogs and dipeptidyl peptidase 4 inhibitors , 2015, Clinical lipidology.

[26]  D. Gaudet,et al.  Targeting APOC3 in the familial chylomicronemia syndrome. , 2014, The New England journal of medicine.

[27]  J. Borén,et al.  Hepatic lipogenesis and a marker of hepatic lipid oxidation, predict postprandial responses of triglyceride‐rich lipoproteins , 2014, Obesity.

[28]  He Zhang,et al.  Loss-of-function mutations in APOC3, triglycerides, and coronary disease. , 2014, The New England journal of medicine.

[29]  B. Nordestgaard,et al.  Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. , 2014, The New England journal of medicine.

[30]  L. Hansson,et al.  The revised Lund-Malmö GFR estimating equation outperforms MDRD and CKD-EPI across GFR, age and BMI intervals in a large Swedish population , 2014, Clinical chemistry and laboratory medicine.

[31]  L. Bardram,et al.  GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. , 2014, Endocrinology.

[32]  A. Pietraszek,et al.  Liraglutide suppresses postprandial triglyceride and apolipoprotein B48 elevations after a fat‐rich meal in patients with type 2 diabetes: a randomized, double‐blind, placebo‐controlled, cross‐over trial , 2013, Diabetes, obesity & metabolism.

[33]  Richard G. Lee,et al.  Antisense Oligonucleotide Inhibition of Apolipoprotein C-III Reduces Plasma Triglycerides in Rodents, Nonhuman Primates, and Humans , 2013, Circulation research.

[34]  Naidong Weng,et al.  Relative quantitation of glycoisoforms of intact apolipoprotein C3 in human plasma by liquid chromatography-high-resolution mass spectrometry. , 2013, Analytical chemistry.

[35]  Z. Yao,et al.  Apolipoprotein C-III and hepatic triglyceride-rich lipoprotein production , 2012, Current opinion in lipidology.

[36]  N. Lundbom,et al.  Epicardial fat, cardiac dimensions, and low-grade inflammation in young adult monozygotic twins discordant for obesity. , 2012, The American journal of cardiology.

[37]  N. Lundbom,et al.  Dual Metabolic Defects Are Required to Produce Hypertriglyceridemia in Obese Subjects , 2011, Arteriosclerosis, thrombosis, and vascular biology.

[38]  F. Sacks,et al.  Complexities of plasma apolipoprotein C-III metabolism1 , 2011, Journal of Lipid Research.

[39]  G. Watts,et al.  Plasma apolipoprotein C-III metabolism in patients with chronic kidney disease , 2011, Journal of Lipid Research.

[40]  Jukka Westerbacka,et al.  Long‐TE 1H MRS suggests that liver fat is more saturated than subcutaneous and visceral fat , 2011, NMR in biomedicine.

[41]  M. Taskinen,et al.  Transcriptional Activation of Apolipoprotein CIII Expression by Glucose May Contribute to Diabetic Dyslipidemia , 2011, Arteriosclerosis, thrombosis, and vascular biology.

[42]  F. Sacks,et al.  Metabolism of Very-Low-Density Lipoprotein and Low-Density Lipoprotein Containing Apolipoprotein C-III and Not Other Small Apolipoproteins , 2010, Arteriosclerosis, thrombosis, and vascular biology.

[43]  J. Borén,et al.  ApoCIII-Enriched LDL in Type 2 Diabetes Displays Altered Lipid Composition, Increased Susceptibility for Sphingomyelinase, and Increased Binding to Biglycan , 2009, Diabetes.

[44]  Y. Fujioka,et al.  Remnant lipoproteins as strong key particles to atherogenesis. , 2009, Journal of atherosclerosis and thrombosis.

[45]  G. Lewis,et al.  Triglyceride-Rich Lipoprotein-Associated Apolipoprotein C-III Production Is Stimulated by Plasma Free Fatty Acids in Humans , 2008, Arteriosclerosis, thrombosis, and vascular biology.

[46]  G. Watts,et al.  Dose-Dependent Effect of Rosuvastatin on VLDL–Apolipoprotein C-III Kinetics in the Metabolic Syndrome , 2008, Diabetes Care.

[47]  G. Watts,et al.  Apolipoprotein C-III: understanding an emerging cardiovascular risk factor. , 2008, Clinical science.

[48]  M. Taskinen,et al.  Vildagliptin therapy reduces postprandial intestinal triglyceride-rich lipoprotein particles in patients with type 2 diabetes , 2006, Diabetologia.

[49]  N. Bergeron,et al.  Apolipoprotein C-III isoforms: kinetics and relative implication in lipid metabolism Published, JLR Papers in Press, February 22, 2006. , 2006, Journal of Lipid Research.

[50]  M. Taskinen,et al.  Alterations of lipids and apolipoprotein CIII in very low density lipoprotein subspecies in type 2 diabetes , 2005, Diabetologia.

[51]  Bernt Wennberg,et al.  A new combined multicompartmental model for apolipoprotein B-100 and triglyceride metabolism in VLDL subfractions Published, JLR Papers in Press, October 16, 2004. DOI 10.1194/jlr.M400108-JLR200 , 2005, Journal of Lipid Research.

[52]  A. Jenkins,et al.  Apolipoprotein C-III protein concentrations and gene polymorphisms in type 1 diabetes: associations with lipoprotein subclasses. , 2004, Metabolism: clinical and experimental.

[53]  B. Patterson,et al.  Rate of production of plasma and very-low-density lipoprotein (VLDL) apolipoprotein C-III is strongly related to the concentration and level of production of VLDL triglyceride in male subjects with different body weights and levels of insulin sensitivity. , 2004, The Journal of clinical endocrinology and metabolism.

[54]  F. Sacks,et al.  LDL Containing Apolipoprotein CIII Is an Independent Risk Factor for Coronary Events in Diabetic Patients , 2003, Arteriosclerosis, thrombosis, and vascular biology.

[55]  M. Pfeffer,et al.  VLDL, Apolipoproteins B, CIII, and E, and Risk of Recurrent Coronary Events in the Cholesterol and Recurrent Events (CARE) Trial , 2000, Circulation.

[56]  V. Narayanaswami,et al.  Molecular basis of exchangeable apolipoprotein function. , 2000, Biochimica et biophysica acta.

[57]  J. Breslow,et al.  Transcriptional regulation of the apoC-III gene by insulin in diabetic mice: correlation with changes in plasma triglyceride levels. , 1994, Journal of lipid research.

[58]  R. Norum,et al.  Apolipoprotein B metabolism in subjects with deficiency of apolipoproteins CIII and AI. Evidence that apolipoprotein CIII inhibits catabolism of triglyceride-rich lipoproteins by lipoprotein lipase in vivo. , 1986, The Journal of clinical investigation.

[59]  D. Galton,et al.  An abnormal triglyceride-rich lipoprotein containing excess sialylated apolipoprotein C-III. , 1982, The Journal of clinical investigation.

[60]  A. Gotto,et al.  Very low density lipoprotein. Removal of Apolipoproteins C-II and C-III-1 during lipolysis in vitro. , 1979, The Journal of biological chemistry.

[61]  W. Brown,et al.  Inhibition of lipoprotein lipase by an apoprotein of human very low density lipoprotein. , 1972, Biochemical and biophysical research communications.

[62]  B. Nordestgaard,et al.  Remnant Cholesterol and Myocardial Infarction in Normal Weight, Overweight, and Obese Individuals from the Copenhagen General Population Study. , 2018, Clinical chemistry.

[63]  B. Nordestgaard,et al.  APOC3 Loss-of-Function Mutations, Remnant Cholesterol, Low-Density Lipoprotein Cholesterol, and Cardiovascular Risk: Mediation- and Meta-Analyses of 137 895 Individuals , 2018, Arteriosclerosis, thrombosis, and vascular biology.

[64]  Alex P. Reiner,et al.  Loss-of-Function Mutations in APOC 3 , Triglycerides , and Coronary Disease , 2014 .

[65]  P. Links,et al.  Expression of apolipoprotein C-III in McA-RH7777 cells enhances VLDL assembly and secretion under lipid-rich conditions. , 2010, Journal of lipid research.

[66]  T. Drüeke,et al.  Presence of Apo B48, and relative Apo CII deficiency and Apo CIII enrichment in uremic very-low density lipoproteins. , 1989, Annales de Biologie Clinique.