Distributed ultrafast fibre laser

A traditional ultrafast fibre laser has a constant cavity length that is independent of the pulse wavelength. The investigation of distributed ultrafast (DUF) lasers is conceptually and technically challenging and of great interest because the laser cavity length and fundamental cavity frequency are changeable based on the wavelength. Here, we propose and demonstrate a DUF fibre laser based on a linearly chirped fibre Bragg grating, where the total cavity length is linearly changeable as a function of the pulse wavelength. The spectral sidebands in DUF lasers are enhanced greatly, including the continuous-wave (CW) and pulse components. We observe that all sidebands of the pulse experience the same round-trip time although they have different round-trip distances and refractive indices. The pulse-shaping of the DUF laser is dominated by the dissipative processes in addition to the phase modulations, which makes our ultrafast laser simple and stable. This laser provides a simple, stable, low-cost, ultrafast-pulsed source with controllable and changeable cavity frequency.

[1]  K. Sato,et al.  Optical pulse generation using fabry-Pe/spl acute/rot lasers under continuous-wave operation , 2003 .

[2]  Zhipei Sun,et al.  Nanotube and graphene saturable absorbers for fibre lasers , 2013, Nature Photonics.

[3]  D. Mao,et al.  Observation of pulse trapping in a near-zero dispersion regime. , 2012, Optics letters.

[4]  Xueming Liu,et al.  Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity. , 2009, Optics express.

[5]  Janne Puustinen,et al.  1.32 μm mode-locked bismuth-doped fiber laser operating in anomalous and normal dispersion regimes. , 2013, Optics letters.

[6]  F. Wise,et al.  Optical solitons in graded-index multimode fibres , 2013, Nature Communications.

[7]  S. Kelly,et al.  Characteristic sideband instability of periodically amplified average soliton , 1992 .

[8]  U. Keller Recent developments in compact ultrafast lasers , 2003, Nature.

[9]  Hermann A. Haus,et al.  Ultrashort-pulse fiber ring lasers , 1997 .

[10]  Zhipei Sun,et al.  Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes , 2013, Scientific Reports.

[11]  Xueming Liu,et al.  Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser , 2010 .

[12]  P.K. Cheo,et al.  Modeling of short, single-frequency, fiber lasers in high-gain fiber , 1993, IEEE Photonics Technology Letters.

[13]  T. Newson,et al.  Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation , 1992 .

[14]  Hemmo Tuovinen,et al.  Dissipative dispersion-managed soliton 2 μm thulium/holmium fiber laser. , 2011, Optics letters.

[15]  D. Mao,et al.  Observation of dual-wavelength dissipative solitons in a figure-eight erbium-doped fiber laser. , 2012, Optics express.

[16]  Yudong Cui,et al.  Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons. , 2013, Optics express.

[17]  D. Tang,et al.  Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers , 2005, 0910.5810.

[18]  P. Grelu,et al.  Dissipative solitons for mode-locked lasers , 2012, Nature Photonics.

[19]  J. Gordon Dispersive perturbations of solitons of the nonlinear Schrödinger equation , 1992 .

[20]  A. Galvanauskas,et al.  Fiber-lasers for ultrafast optics , 1997 .

[21]  Alfred Leitenstorfer,et al.  Ultrabroadband Er:fiber lasers , 2014 .

[22]  Xueming Liu Dynamic evolution of temporal dissipative-soliton molecules in large normal path-averaged dispersion fiber lasers , 2010 .

[23]  Carlo Sirtori,et al.  Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser , 2010 .

[24]  A. Grudinin,et al.  Performance limitations of high-power DFB fiber lasers , 2003, IEEE Photonics Technology Letters.

[25]  G. Millot,et al.  Self-similarity in ultrafast nonlinear optics , 2007 .

[26]  C. Jirauschek,et al.  Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers , 2013, Nature Communications.

[27]  Sergei K. Turitsyn,et al.  Random distributed feedback fiber laser , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[28]  I Bennion,et al.  High-power soliton fiber laser based on pulse width control with chirped fiber Bragg gratings. , 1995, Optics letters.

[29]  I. Hartl,et al.  Ultrafast Fiber Laser Technology , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[30]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[31]  N. Doran,et al.  Nonlinear-optical loop mirror. , 1988, Optics letters.

[32]  D. Linde Characterization of the noise in continuously operating mode-locked lasers , 1986 .

[33]  X. M. Liu,et al.  Simultaneous picosecond and femtosecond solitons delivered from a nanotube-mode-locked all-fiber laser. , 2014, Optics letters.

[34]  Sergei K. Turitsyn,et al.  Polarisation Dynamics of Vector Soliton Molecules in Mode Locked Fibre Laser , 2013, Scientific Reports.

[35]  H. Kataura,et al.  Mode-locking nanoporous alumina membrane embedded with carbon nanotube saturable absorber , 2009 .

[36]  Xueming Liu Interaction and motion of solitons in passively-mode-locked fiber lasers , 2011 .

[37]  Ingmar Hartl,et al.  Ultrafast fibre lasers , 2013, Nature Photonics.

[38]  E. Garmire,et al.  Resonant optical nonlinearities in semiconductors , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[39]  R. A. Hogg,et al.  1.55 µm InAs/GaAs Quantum Dots and High Repetition Rate Quantum Dot SESAM Mode-locked Laser , 2012, Scientific Reports.

[40]  J. Limpert,et al.  Experimental and numerical study of pulse dynamics in positive net-cavity dispersion modelocked Yb-doped fiber lasers. , 2007, Optics express.

[41]  David N. Payne,et al.  All-solid-state subpicosecond passively mode locked erbium-doped fiber laser , 1993 .

[42]  Irl N. Duling,et al.  Experimental study of sideband generation in femtosecond fiber lasers , 1994 .

[43]  Xueming Liu,et al.  Soliton formation and evolution in passively-mode-locked lasers with ultralong anomalous-dispersion fibers , 2011 .

[44]  F. Ömer Ilday,et al.  Soliton–similariton fibre laser , 2010 .

[45]  Xueming Liu,et al.  Bidirectional fiber soliton laser mode-locked by single-wall carbon nanotubes. , 2013, Optics express.

[46]  J. Fujimoto,et al.  Structures for additive pulse mode locking , 1991 .

[47]  Frank W. Wise,et al.  High‐energy femtosecond fiber lasers based on pulse propagation at normal dispersion , 2008 .

[48]  Govind P. Agrawal,et al.  Applications of Nonlinear Fiber Optics , 2001 .

[49]  C. Christov,et al.  Dissipative solitons , 1995 .

[50]  M. H. Ober,et al.  High-power neodymium soliton fiber laser that uses a chirped fiber grating. , 1995, Optics letters.

[51]  A. Fotiadi Random lasers: An incoherent fibre laser , 2010 .

[52]  K. Abramski,et al.  Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz , 2012 .

[53]  Yoav Sintov,et al.  Passively mode-locked ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control , 2007 .

[54]  G. Agrawal,et al.  Amplification of ultrashort solitons in erbium-doped fiber amplifiers , 1990, IEEE Photonics Technology Letters.

[55]  M. Jablonski,et al.  Ultrafast fiber pulsed lasers incorporating carbon nanotubes , 2004, IEEE Journal of Selected Topics in Quantum Electronics.