Prompt Quantitative Risk Assessment for Rain-Induced Landslides

[1]  S. Lacasse,et al.  Increased human risk caused by cascading hazards - A framework. , 2022, The Science of the total environment.

[2]  S. Lacasse,et al.  Predicting spatio-temporal man-made slope failures induced by rainfall in Hong Kong using machine learning techniques , 2022, Géotechnique.

[3]  M. Marchelli,et al.  A mixed quantitative approach to evaluate rockfall risk and the maximum allowable traffic on road infrastructure , 2021, Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards.

[4]  H. Luo,et al.  Process of building collapse caused by the Po Shan Road landslide in Hong Kong on 18 June 1972 , 2021, Landslides.

[5]  T. Zhao,et al.  An efficient Bayesian method for estimating runout distance of region-specific landslides using sparse data , 2021, Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards.

[6]  D. Kirschbaum,et al.  Data-Driven Landslide Nowcasting at the Global Scale , 2021, Frontiers in Earth Science.

[7]  S. Moon,et al.  Topographic stress control on bedrock landslide size , 2021, Nature Geoscience.

[8]  Limin Zhang,et al.  Assessing the annual risk of vehicles being hit by a rainfall-induced landslide: a case study on Kennedy Road in Wan Chai, Hong Kong , 2020 .

[9]  J. Kwan,et al.  Hong Kong’s landslip warning system—40 years of progress , 2020, Landslides.

[10]  D. Petley,et al.  Global fatal landslide occurrence from 2004 to 2016 , 2018, Natural Hazards and Earth System Sciences.

[11]  L. Zhang,et al.  EDDA 2.0: integrated simulation of debris flow initiation and dynamics considering two initiation mechanisms , 2017, Geoscientific Model Development.

[12]  Florence W. Y. Ko,et al.  Rainfall-based landslide susceptibility analysis for natural terrain in Hong Kong - A direct stock-taking approach , 2016 .

[13]  P. O'Gorman,et al.  More extreme precipitation in the world’s dry and wet regions , 2016 .

[14]  Jean Benoît,et al.  The 22 March 2014 Oso landslide, Washington, USA , 2016 .

[15]  J. Malet,et al.  Recommendations for the quantitative analysis of landslide risk , 2013, Bulletin of Engineering Geology and the Environment.

[16]  D. V. Griffiths,et al.  Quantitative risk assessment of landslide by limit analysis and random fields , 2013 .

[17]  Michel Jaboyedoff,et al.  Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale , 2013 .

[18]  J. Godt,et al.  Early warning of rainfall-induced shallow landslides and debris flows in the USA , 2010 .

[19]  M. Rossi,et al.  The rainfall intensity–duration control of shallow landslides and debris flows: an update , 2008 .

[20]  H. H. Einstein,et al.  Warning systems for natural threats , 2007 .

[21]  R. Soeters,et al.  Landslide hazard and risk zonation—why is it still so difficult? , 2006 .

[22]  P. Peduzzi,et al.  Global landslide and avalanche hotspots , 2006 .

[23]  Thomas Glade,et al.  Quantitative risk analysis for landslides ‒ Examples from Bíldudalur, NW-Iceland , 2004 .

[24]  P. Finlay,et al.  Landslide risk assessment: prediction of travel distance , 1999 .

[25]  R. Fell Landslide risk assessment and acceptable risk , 1994 .

[26]  W. M. Brown,et al.  Real-Time Landslide Warning During Heavy Rainfall , 1987, Science.

[27]  A. K. Lysdahl,et al.  Modelling of shallow landslides with machine learning algorithms , 2021 .

[28]  Ivan Marchesini,et al.  Geographical landslide early warning systems , 2020 .