Seafloor hydrothermal systems

The discovery of seafloor hydrothermal systems approximately two decades ago has led to a major reassessment of the Earth's thermal and geochemical budgets and has revolutionized our understanding of biological processes. This review traces the development of the study of seafloor hydrothermal systems from the indirect evidence provided by conductive heat flow anomalies to the discovery of ≈ 350°C black smoker vents on the East Pacific Rise at 21°N. Although the review focuses on physical characteristics and processes, it outlines some key characteristics of vent fluid chemistry that provide constraints on physical models. Ridge crest systems have thermal power outputs ranging from 10 to 104 MW. They are transient systems, driven by magmatic heat sources, but episodic events such as megaplumes, the interplay between focused and diffuse venting, and other aspects related to their thermal, chemical, and biological evolution remain poorly understood. Advances will be made by continuing exploration and discovery to determine the full range of possible phenomena both on and off axis and in different tectonic settings. In order to understand the complete, integrated ridge system, however, future studies must include long-term monitoring of an active system, deep drilling into the reaction zone, and mathematical modeling that incorporates both physical and chemical constraints.

[1]  M. Mottl,et al.  Heat flux from black smokers on the Endeavour and Cleft segments, Juan de Fuca Ridge , 1994 .

[2]  T. Narasimhan,et al.  Off-axis hydrothermal circulation: Parametric tests of a refined model of processes at Deep Sea Drilling Project/Ocean Drilling Program site 504 , 1994 .

[3]  S. Stein,et al.  Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow , 1994 .

[4]  P. Nehlig Fracture and permeability analysis in magma-hydrothermal transition zones in the Samail ophiolite (Oman) , 1994 .

[5]  L. Germanovich,et al.  On the temporal evolution of high-temperature hydrothermal systems at ocean ridge crests , 1994 .

[6]  R. Binns,et al.  Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Guinea , 1993 .

[7]  W. Goodfellow,et al.  Geology, mineralogy, and chemistry of sediment-hosted clastic massive sulfides in shallow cores, Middle Valley, northern Juan de Fuca Ridge , 1993 .

[8]  P. Herzig,et al.  Metallogenesis in back-arc environments; the Lau Basin example , 1993 .

[9]  P. Rona,et al.  A special issue on sea-floor hydrothermal mineralization; new perspectives; preface , 1993 .

[10]  C. V. Raman,et al.  Active and relict sea-floor hydrothermal mineralization at the TAG hydrothermal field, Mid-Atlantic Ridge , 1993 .

[11]  P. Gente,et al.  Tectonic setting and mineralogical and geochemical zonation in the Snake Pit sulfide deposit (Mid-Atlantic Ridge at 23 degrees N) , 1993 .

[12]  A. P. Lisitzin,et al.  Hydrothermal oxide and gold-rich sulfate deposits of Franklin Seamount, western Woodlark Basin, Papua New Guinea , 1993 .

[13]  L. Cathles A capless 350 degrees C flow zone model to explain megaplumes, salinity variations, and high-temperature veins in ridge axis hydrothermal systems , 1993 .

[14]  P. Stoffers,et al.  Hydrothermal Fe and Si oxyhydroxide deposits from South Pacific intraplate volcanoes and East Pacific Rise axial and off-axial regions , 1993 .

[15]  P. Halbach,et al.  Geology and mineralogy of massive sulfide ores from the central Okinawa Trough, Japan , 1993 .

[16]  R. Zierenberg,et al.  Genesis of massive sulfide deposits on a sediment-covered spreading center, Escanaba Trough, southern Gorda Ridge , 1993 .

[17]  M. Kennish,et al.  Ecology of deep‐sea hydrothermal vent communities: A review , 1993 .

[18]  Matthew C. Smith,et al.  Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9°45-52'N: direct submersible observations of seafloor phenomena associated with an eruption event in April, 1991 , 1993 .

[19]  M. Hannington,et al.  Relict hydrothermal zones in the TAG Hydrothermal Field, Mid‐Atlantic Ridge 26°N, 45°W , 1993 .

[20]  Y. Fouquet,et al.  New age data for Mid‐Atlantic Ridge hydrothermal sites: TAG and Snakepit chronology revisited , 1993 .

[21]  S. Stein,et al.  Constraints on lithospheric thermal structure for the Indian Ocean from depth and heat flow data , 1993 .

[22]  E. Cranswick,et al.  Recording ground motions where people live , 1993 .

[23]  William E Seyfried,et al.  The effect of redox on the relative solubilities of copper and iron in Cl-bearing aqueous fluids at elevated temperatures and pressures: An experimental study with application to subseafloor hydrothermal systems , 1993 .

[24]  M. Mottl,et al.  Geothermal heat flux from hydrothermal plumes on the Juan de Fuca ridge , 1993 .

[25]  L. Germanovich,et al.  Silica Precipitation in Fractures and the Evolution of Permeability in Hydrothermal Upflow Zones , 1993, Science.

[26]  R. Haymon,et al.  The relationship between flow and permeability field in seafloor hydrothermal systems , 1993 .

[27]  C. T. Russell SPA dinner, “Dubious Distinction” awards , 1993 .

[28]  John R. Delaney,et al.  Geology of a vigorous hydrothermal system on the Endeavour segment, Juan de Fuca Ridge , 1992 .

[29]  S. Galkin,et al.  HYDROTHERMAL MANIFESTATIONS AT PIYP subMARINE VOLCANO, BERING SEA , 1992 .

[30]  S. Stein,et al.  A model for the global variation in oceanic depth and heat flow with lithospheric age , 1992, Nature.

[31]  J. Collier,et al.  Seismic mapping of a magma chamber beneath the Valu Fa Ridge, Lau Basin , 1992 .

[32]  J. Charlou,et al.  Hydrothermal circulation, serpentinization, and degassing at a rift valley-fracture zone intersection: Mid-Atlantic Ridge near 15°N, 45°W , 1992 .

[33]  J. Delaney,et al.  On the partitioning of heat flux between diffuse and point source seafloor venting , 1992 .

[34]  E. Oelkers,et al.  SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 ° C , 1992 .

[35]  J. Delaney,et al.  Physical characteristics of the Endeavour Ridge hydrothermal plume during July 1988 , 1992 .

[36]  M. Mottl,et al.  FlankFlux: an experiment to study the nature of hydrothermal circulation in young oceanic crust , 1992 .

[37]  M. D. Rudnicki,et al.  Theory applied to the Mid-Atlantic ridge hydrothermal plumes: the finite-difference approach , 1992 .

[38]  L. Germanovich,et al.  Percolation Theory, Thermoelasticity, and Discrete Hydrothermal Venting in the Earth's Crust , 1992, Science.

[39]  P. Rona,et al.  Discrete and diffuse heat transfer atashes vent field, Axial Volcano, Juan de Fuca Ridge , 1992 .

[40]  R. S. Jacobson Impact of crustal evolution on changes of the seismic properties of the uppermost ocean crust , 1992 .

[41]  P. Sedwick,et al.  Gas-rich submarine exhalations during the 1989 eruption of Macdonald Seamount , 1991 .

[42]  J. Charlou,et al.  Different TDM/CH4 hydrothermal plume signatures: TAG site at 26°N and serpentinized ultrabasic diapir at 15°05′N on the Mid-Atlantic Ridge , 1991 .

[43]  R. Lowell Modeling continental and submarine hydrothermal systems , 1991 .

[44]  B. Travis,et al.  Three‐dimensional simulation of hydrothermal circulation at mid‐ocean ridges , 1991 .

[45]  E. Baker,et al.  Geology of the northern Cleft segment, Juan de Fuca Ridge: Recent lava flows, sea-floor spreading, and the formation of megaplumes , 1991 .

[46]  J. Naka,et al.  In situ geological and geochemical study of an active hydrothermal site on the North Fiji Basin ridge , 1991 .

[47]  Dawn J. Wright,et al.  Hydrothermal vent distribution along the East Pacific Rise crest (9°09′–54′N) and its relationship to magmatic and tectonic processes on fast-spreading mid-ocean ridges , 1991 .

[48]  R. Lowell,et al.  Mathematical modeling of conductive heat transfer from a freezing, convecting magma chamber to a single-pass hydrothermal system: implications for seafloor black smokers , 1991 .

[49]  W. Seyfried,et al.  The effect of temperature on metal mobility in subseafloor hydrothermal systems: constraints from basalt alteration experiments , 1990 .

[50]  J. Karson,et al.  Block-tilting, transfer faults, and structural control of magmatic and hydrothermal processesin the TAG area, Mid-Atlantic Ridge 26°N , 1990 .

[51]  T. Matsumoto,et al.  Unique chemistry of the hydrothermal solution in the mid‐Okinawa Trough Backarc Basin , 1990 .

[52]  I. I. Kim,et al.  No evidence from multichannel reflection data for a crustal magma chamber in the MARK area on the Mid-Atlantic Ridge , 1990, Nature.

[53]  E. Baker,et al.  Hydrothermal venting from the summit of a ridge axis Seamount: Axial Volcano, Juan de Fuca Ridge , 1990 .

[54]  S. Hammond Relationships between lava types, seafloor morphology, and the occurrence of hydrothermal venting in the ASHES vent field of Axial Volcano. [Axial Seamount Hydrothermal Emission Study] , 1990 .

[55]  G. Massoth,et al.  Geochemistry of hydrothermal fluids from Axial Seamount hydrothermal emissions study vent field, Juan de Fuca Ridge: Subseafloor boiling and subsequent fluid‐rock interaction , 1990 .

[56]  M. Tivey,et al.  Mineral precipitation in the walls of black smoker chimneys: A quantitative model of transport and chemical reaction , 1990 .

[57]  E. Baker,et al.  Changes in submarine hydrothermal 3He/heat ratios as an indicator of magmatic/tectonic activity , 1990, Nature.

[58]  W. Seyfried,et al.  Boron, bromine, and other trace elements as clues to the fate of chlorine in mid-ocean ridge vent fluids , 1990 .

[59]  Trevor J. McDougall,et al.  Bulk properties of “hot smoker” plumes , 1990 .

[60]  M. Mottl,et al.  Passive, off‐axis convection through the southern flank of the Costa Rica Rift , 1990 .

[61]  H. Wakita,et al.  Venting of Carbon Dioxide-Rich Fluid and Hydrate Formation in Mid-Okinawa Trough Backarc Basin , 1990, Science.

[62]  M. Fisk,et al.  Major off-axis hydrothermal activity on the northern Gorda Ridge , 1990 .

[63]  R. Lowell Thermoelasticity and the formation of black smokers , 1990 .

[64]  Steven Dlckman Rich uncle or Big Brother? , 1990, Nature.

[65]  A. Harding,et al.  Evidence for a smaller magma chamber beneath the East Pacific Rise at 9°30′ N , 1990, Nature.

[66]  R. Clowes,et al.  Shallow crustal structure beneath the Juan de Fuca Ridge from 2-D seismic refraction tomography , 1990 .

[67]  K. Speer,et al.  An Atlantic hydrothermal plume: Trans‐Atlantic geotraverse (TAG) area, Mid‐Atlantic Ridge crest near 26°N , 1989 .

[68]  J. Cann,et al.  Modeling periodic megaplume emission by black smoker systems , 1989 .

[69]  R. Rosenbauer,et al.  Salinity Variations in Submarine Hydrothermal Systems by Layered Double-Diffusive Convection , 1989, The Journal of Geology.

[70]  G. Massoth,et al.  Submarine venting of phase-separated hydrothermal fluids at Axial Volcano, Juan de Fuca Ridge , 1989, Nature.

[71]  E. Baker,et al.  Episodic venting of hydrothermal fluids from the Juan de Fuca Ridge , 1989 .

[72]  T. Brikowski,et al.  Influence of magma chamber geometry on hydrothermal activity at mid-ocean ridges , 1989 .

[73]  Peter A. Rona,et al.  A model of an Atlantic and Pacific hydrothermal plume , 1989 .

[74]  Kenneth S. Pitzer,et al.  Liquid-vapor relations for the system NaCl-H 2 O; summary of the P-T-x surface from 300 degrees to 500 degrees C , 1989 .

[75]  E. Baker,et al.  Variable 3He/heat ratios in submarine hydrothermal systems: evidence from two plumes over the Juan de Fuca ridge , 1989, Nature.

[76]  J. B. Rapp,et al.  Geochemistry of some gases in hydrothermal fluids from the southern Juan de Fuca Ridge , 1988 .

[77]  M. L. Sorey,et al.  Vapor‐Dominated Zones Within Hydrothermal Systems: Evolution and Natural State , 1988 .

[78]  G. Auclair,et al.  Geological setting and mineralogical and geochemical investigations on sulfide deposits near 13°N on the East Pacific Rise , 1988 .

[79]  A. C. Campbell,et al.  Chemistry of hot springs on the Mid-Atlantic Ridge , 1988, Nature.

[80]  M. Hannington,et al.  Mineralogy and geochemistry of a hydrothermal silica-sulfide-sulfate spire in the caldera of Axial Seamount, Juan De Fuca Ridge , 1988 .

[81]  M. Tivey,et al.  Submersible investigation of an extinct hydrothermal system on the Galapagos Ridge; sulfide mounds, stockwork zone, and differentiated lavas , 1988 .

[82]  P. Herzig,et al.  Exploration for hydrothermal activity near the Rodriguez triple junction, Indian Ocean , 1988 .

[83]  P. Nehlig,et al.  Flow porosities, permeabilities and preliminary data on fluid inclusions and fossil thermal gradients in the crustal sequence of the Sumail ophiolite (Oman) , 1988 .

[84]  P. Rona Hydrothermal mineralization at oceanic ridges , 1988 .

[85]  M. Lilley,et al.  Estimation of heat and chemical fluxes from a seafloor hydrothermal vent field using radon measurements , 1988, Nature.

[86]  B. Kennedy Noble gases in vent water from the Juan de Fuca Ridge , 1988 .

[87]  A. C. Campbell,et al.  A time series of vent fluid compositions from 21°N, East Pacific Rise (1979, 1981, 1985), and the Guaymas Basin, Gulf of California (1982, 1985) , 1988 .

[88]  A. C. Campbell,et al.  Chemical controls on the composition of vent fluids at 13°–11°N and 21°N, East Pacific Rise , 1988 .

[89]  K. V. Damm Systematics of and postulated controls on submarine hydrothermal solution chemistry , 1988 .

[90]  D. Vanko Temperature, pressure, and composition of hydrothermal fluids, with their bearing on the magnitude of tectonic uplift at mid-ocean ridges, inferred from fluid inclusions in oceanic layer 3 rocks , 1988 .

[91]  J. Cann,et al.  Supercritical two-phase separation of hydrothermal fluids in the Troodos ophiolite , 1988, Nature.

[92]  S. Stein,et al.  Microplate and shear zone models for oceanic spreading center reorganizations , 1988 .

[93]  M. Mottl,et al.  The Distribution of Geothermal and Geochemical Gradients near Site 501/504: Implications for Hydrothermal Circulation in the Oceanic Crust , 1988 .

[94]  K. V. Damm,et al.  Chemistry of hydrothermal solutions from the southern Juan de Fuca Ridge , 1987 .

[95]  E. Baker,et al.  Characteristics of hydrothermal plumes from two vent fields on the Juan de Fuca Ridge, northeast Pacific Ocean , 1987 .

[96]  E. Baker,et al.  Cataclysmic hydrothermal venting on the Juan de Fuca Ridge , 1987, Nature.

[97]  J. Cann,et al.  Metal-depleted root zones of the Troodos ore-forming hydrothermal systems, Cyprus , 1987 .

[98]  L. Merlivat,et al.  Hydrothermal vent waters at 13°N on the East Pacific Rise: isotopic composition and gas concentration , 1987 .

[99]  J. Delaney,et al.  Two-phase separation and fracturing in mid-ocean ridge gabbros at temperatures greater than 700°C , 1987 .

[100]  K. Stolzenbach,et al.  Measurements of plume flow from a hydrothermal vent field , 1987 .

[101]  O. F. Robert Conceptual models of brine evolution in magmatic-hydrothermal systems , 1987 .

[102]  J. Mutter,et al.  Multi-channel seismic imaging of a crustal magma chamber along the East Pacific Rise , 1987, Nature.

[103]  S. Humphris,et al.  Drilling the Snake Pit hydrothermal sulfide deposit on the Mid-Atlantic Ridge, lat 23/sup 0/22'N , 1986 .

[104]  J. Alt,et al.  Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B: Mineralogy, chemistry and evolution of seawater‐basalt interactions , 1986 .

[105]  D. Bideau,et al.  Detailed geological mapping by submersible of the East Pacific Rise axial graben near 13°N , 1986 .

[106]  P. Rona,et al.  Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge , 1986, Nature.

[107]  J. Delaney,et al.  Growth of large sulfide structures on the endeavour segment of the Juan de Fuca ridge , 1986 .

[108]  M. Mottl,et al.  Geologic form and setting of a hydrothermal vent field at lat 10°56′N, East Pacific Rise: A detailed study using Angus and Alvin , 1986 .

[109]  W. Seyfried,et al.  Chloride depletions and enrichments in seafloor hydrothermal fluids: Constraints from experimental basalt alteration studies , 1986 .

[110]  J. Cann,et al.  A fracture-loop thermal balance model of black smoker circulation , 1986 .

[111]  J. Cann,et al.  A simple magma-driven thermal balance model for the formation of volcanogenic massive sulphides , 1985 .

[112]  D. Kadko,et al.  An estimate of hydrothermal fluid residence times and vent chimney growth rates based on210Pb/Pb ratios and mineralogic studies of sulfides dredged from the Juan de Fuca Ridge , 1985 .

[113]  N. Sleep,et al.  A Mid‐Ocean Ridge Thermal Model: Constraints on the volume of axial hydrothermal heat flux , 1985 .

[114]  Ray F. Weiss,et al.  Chemistry of submarine hydrothermal solutions at 21 °N, East Pacific Rise , 1985 .

[115]  R. Rosenbauer,et al.  An empirical equation of state for hydrothermal seawater (3.2 percent NaCl) , 1985 .

[116]  P. Rona Black smokers on the Mid‐Atlantic Ridge , 1985 .

[117]  R. Lowell,et al.  Hydrothermal models for the generation of massive sulfide ore deposits , 1985 .

[118]  D. Weatherall Science and medicine put right , 1985, Nature.

[119]  R. Hékinian,et al.  Age dating of sulfide deposits from axial and off-axial structures on the East Pacific Rise near 12°50′N , 1985 .

[120]  K. Becker,et al.  Hydrothermal plumes, hot springs, and conductive heat flow in the Southern Trough of Guaymas Basin , 1985 .

[121]  R. M. Owen,et al.  Sea-floor hydrothermal activity links climate to tectonics: the Eocene carbon dioxide greenhouse. , 1985, Science.

[122]  M. Mottl,et al.  Hydrothermal activity at the Trans‐Atlantic Geotraverse Hydrothermal Field, Mid‐Atlantic Ridge crest at 26°N , 1984 .

[123]  D. Clague,et al.  Mineralogy and chemistry of massive sulfide deposits from the Juan de Fuca Ridge , 1984 .

[124]  J. Edmond,et al.  Flow rates in the axial hot springs of the East Pacific Rise (21°N): Implications for the heat budget and the formation of massive sulfide deposits , 1984 .

[125]  Robert J. Rosenbauer,et al.  The critical point and two-phase boundary of seawater, 200–500°C , 1984 .

[126]  J. Eissen,et al.  Time and space constraints on the evolution of medium-rate spreading centers , 1983 .

[127]  R. Garrels,et al.  The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years , 1983 .

[128]  L. Merlivat,et al.  East Pacific Rise Near 13�N: Geology of New Hydrothermal Fields , 1983, Science.

[129]  D. Clague,et al.  Active hydrothermal vents and sulfide deposits on the southern Juan de Fuca Ridge , 1983 .

[130]  R. Ballard,et al.  Intense hydrothermal activity at the axis of the east pacific rise near 13°N: Sumbersible witnesses the growth of sulfide chimney , 1983 .

[131]  Roger N. Anderson,et al.  Anomalous heat flow in the northwest Atlantic: A case for continued hydrothermal circulation in 80-M.Y. crust , 1983 .

[132]  R. V. Herzen,et al.  Heat flow on the western flank of the East Pacific Rise at 21°N , 1983 .

[133]  L. Cathles,et al.  Numerical models for the hydrothermal field at the Galapagos Spreading Center , 1983 .

[134]  R. V. Herzen,et al.  Heat transfer through the sediments of the Mounds Hydrothermal Area, Galapagos Spreading Center at 86°W , 1983 .

[135]  Egill Hauksson,et al.  Episodic rifting and volcanism at Krafla in north Iceland: Growth of large ground fissures along the plate boundary , 1983 .

[136]  Mark A. Riedesel,et al.  Microearthquakes in the Black Smoker Hydrothermal Field, East Pacific Rise at 21°N , 1982 .

[137]  C. Lalou,et al.  Ages and implications of East Pacific Rise sulphide deposits at 21 °N , 1982, Nature.

[138]  H. Stommel Is the South Pacific helium-3 plume dynamically active? , 1982 .

[139]  R. Rosenbauer,et al.  The solubility of quartz in aqueous sodium chloride solution at 350°C and 180 to 500 bars , 1982 .

[140]  J. Cann,et al.  A model of hydrothermal circulation in fault zones at mid-ocean ridge crests , 1982 .

[141]  A. Malahoff,et al.  Geology and chemistry of hydrothermal deposits from active submarine volcano Loihi, Hawaii , 1982, Nature.

[142]  M. Mottl,et al.  Hydrothermal alteration of basalt by seawater under seawater-dominated conditions , 1982 .

[143]  Robert D. Ballard,et al.  The Galapagos Rift at 86°W: 5. Variations in volcanism, structure, and hydrothermal activity along a 30‐kilometer segment of the Rift Valley , 1982 .

[144]  J. Francheteau,et al.  East Pacific rise at 21°N: the volcanic, tectonic, and hydrothermal processes of the central axis , 1981 .

[145]  R. Haymon,et al.  Hot spring deposits on the East Pacific Rise at 21°N: preliminary description of mineralogy and genesis , 1981 .

[146]  David L. Williams,et al.  The Galapagos Spreading Center at 86°W: A detailed geothermal field study , 1981 .

[147]  Robert D. Ballard,et al.  Hydrothermal heat flux of the “black smoker” vents on the East Pacific Rise , 1980 .

[148]  F N Spiess,et al.  East Pacific Rise: Hot Springs and Geophysical Experiments , 1980, Science.

[149]  R. Ballard,et al.  The Galapagos Rift at 86° W: 4. Structure and morphology of hydrothermal fields and their relationship to the volcanic and tectonic processes of the Rift Valley , 1980 .

[150]  C. Jaupart,et al.  The heat flow through oceanic and continental crust and the heat loss of the Earth , 1980 .

[151]  David L. Williams,et al.  The hydrothermal mounds of the Galapagos Rift: Observations with DSRV Alvin and detailed heat flow studies , 1979 .

[152]  W. Seyfried,et al.  Low temperature basalt alteration by sea water: an experimental study at 70°C and 150°C , 1979 .

[153]  Robert J Collier,et al.  Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: The Galapagos data , 1979 .

[154]  H. Craig,et al.  Methane and hydrogen in East Pacific Rise hydrothermal fluids , 1979 .

[155]  L. Cathles,et al.  Hydrothermal convection at slow-spreading mid-ocean ridges , 1979 .

[156]  P. Robinson,et al.  Deep Crustal Drilling in the North Atlantic Ocean , 1979, Science.

[157]  David L. Williams,et al.  Submarine Thermal Springs on the Gal�pagos Rift , 1979, Science.

[158]  Charles R. Faust,et al.  Geothermal reservoir simulation: 2. Numerical solution techniques for liquid‐ and vapor‐dominated hydrothermal systems , 1979 .

[159]  Charles R. Faust,et al.  Geothermal reservoir simulation: 1. Mathematical models for liquid‐ and vapor‐dominated hydrothermal systems , 1979 .

[160]  R. Ballard,et al.  Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise , 1979, Nature.

[161]  J. Turner,et al.  The flow of hot saline solutions from vents in the sea floor; some implications for exhalative massive sulfide and other ore deposits , 1978 .

[162]  S. Sparks,et al.  Lateral magma flow within rifted Icelandic crust , 1978, Nature.

[163]  P. Rona,et al.  Early Cenozoic global plate reorganization , 1978 .

[164]  J. Edmond,et al.  Excess 3He and 4He in Galapagos submarine hydrothermal waters , 1978, Nature.

[165]  E. Davis,et al.  Heat flow measured over the Juan de Fuca Ridge: Evidence for widespread hydrothermal circulation in a highly heat transportive crust , 1977 .

[166]  R. Weiss,et al.  Hydrothermal manganese in the Galapagos Rift , 1977, Nature.

[167]  Roger N. Anderson,et al.  The mechanisms of heat transfer through the floor of the Indian Ocean , 1977 .

[168]  J. Lupton,et al.  Hydrothermal plumes in the Galapagos Rift , 1977, Nature.

[169]  R. Weiss,et al.  Mantle helium in hydrothermal plumes in the Galapagos Rift , 1977, Nature.

[170]  B. Parsons,et al.  An analysis of the variation of ocean floor bathymetry and heat flow with age , 1977 .

[171]  R. Lowell,et al.  On the interpretation of near-bottom water temperature anomalies , 1976 .

[172]  R. J. Ribando,et al.  Numerical models for hydrothermal circulation in the oceanic crust , 1976 .

[173]  Roger N. Anderson,et al.  The relation between heat flow, sediment thickness, and age in the eastern Pacific , 1976 .

[174]  N. Sleep,et al.  Hydrothermal Circulation and Geochemical Flux at Mid-Ocean Ridges , 1976, The Journal of Geology.

[175]  J. Malpas,et al.  Duration of hydrothermal activity at an oceanic spreading center, Mid-Atlantic Ridge (lat 26°N) , 1976 .

[176]  B. Herman,et al.  Heat flow in the oceanic crust bounding Western Africa (Abstract) , 1976 .

[177]  Robert D. Ballard,et al.  Manned Submersible Observations in the FAMOUS Area: Mid-Atlantic Ridge , 1975, Science.

[178]  H. Craig,et al.  Excess 3He in deep water on the East Pacific Rise , 1975 .

[179]  J. Bischoff,et al.  Seawater-basalt interaction at 200°C and 500 bars: Implications for origin of sea-floor heavy-metal deposits and regulation of seawater chemistry , 1975 .

[180]  R. Lowell Circulation in Fractures, Hot Springs, and Convective Heat Transport on Mid-ocean Ridge Crests , 1975 .

[181]  C. Lister On the Penetration of Water into Hot Rock , 1974 .

[182]  P. Rona,et al.  Rapidly accumulating manganese deposit from the Median Valley of the Mid‐Atlantic Ridge , 1974 .

[183]  J. Mudie,et al.  The Galapagos Spreading Centre: A Near-Bottom Geophysical Survey , 1974 .

[184]  David L. Williams,et al.  The Galapagos Spreading Centre: Lithospheric Cooling and Hydrothermal Circulation , 1974 .

[185]  David L. Williams,et al.  Heat Loss from the Earth: New Estimate , 1974 .

[186]  G. Pálmason,et al.  Iceland in Relation to the Mid-Atlantic Ridge , 1974 .

[187]  W. Fyfe,et al.  Sub-sea-floor metamorphism, heat and mass transfer , 1973 .

[188]  D. Oldenburg,et al.  Thermal Model of Ocean Ridges , 1973 .

[189]  M. Schoell,et al.  New Deeps with Brines and Metalliferous Sediments in the Red Sea , 1972 .

[190]  Roger N. Anderson,et al.  Petrologic Significance of Low Heat Flow on the Flanks of Slow-Spreading Midocean Ridges , 1972 .

[191]  G. Bodvarsson,et al.  Ocean‐floor heat flow and the circulation of interstitial waters , 1972 .

[192]  C. Lister On the Thermal Balance of a Mid‐Ocean Ridge , 1972 .

[193]  J. B. Corliss The origin of metal‐bearing submarine hydrothermal solutions , 1971 .

[194]  Roger N. Anderson,et al.  Elevation of ridges and evolution of the central Eastern Pacific. , 1971 .

[195]  F. Aumento,et al.  Hudson Geotraverse: Geology of the Mid-Atlantic Ridge at 45 degrees N , 1971 .

[196]  M. Talwani,et al.  Reykjanes ridge crest: A detailed geophysical study , 1971 .

[197]  M. Langseth,et al.  Heat flow from the Mid-Ocean Ridges and sea-floor spreading , 1969 .

[198]  H. Craig,et al.  Excess 3He in the sea: Evidence for terrestrial primodal helium , 1969 .

[199]  E. D. Schneider,et al.  Discontinuities in the History of Sea-floor Spreading , 1968, Nature.

[200]  D. McKenzie Some remarks on heat flow and gravity anomalies , 1967 .

[201]  M. Ewing,et al.  Crustal structure of the mid‐ocean ridges: 5. Heat flow through the Atlantic Ocean floor and convection currents , 1966 .

[202]  M. Peterson,et al.  Precipitates from hydrothermal exhalations on the East Pacific rise , 1966 .

[203]  A. Miller,et al.  Hot brines and recent iron deposits in deeps of the Red Sea , 1966 .

[204]  A. Miller High Salinity in Sea Water , 1964, Nature.

[205]  G. B. Dalrymple,et al.  Reversals of the Earth's Magnetic Field , 1967 .

[206]  S. Uyeda,et al.  Heat flow through the eastern Pacific ocean floor , 1963 .

[207]  Geoffrey Ingram Taylor,et al.  Turbulent gravitational convection from maintained and instantaneous sources , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[208]  A. E. Maxwell,et al.  Heat Flow through the Floor of the Eastern North Pacific Ocean , 1952, Nature.

[209]  G. Kennedy A portion of the system silica-water , 1950 .

[210]  E. R. Lapwood Convection of a fluid in a porous medium , 1948, Mathematical Proceedings of the Cambridge Philosophical Society.

[211]  E. Bullard Heat Flow in South Africa , 1939 .

[212]  A. Benfield Terrestrial heat flow in Great Britain , 1939 .

[213]  Susan E. Humphris,et al.  Seafloor hydrothermal systems : physical, chemical, biological, and geological interactions , 1995 .

[214]  Charles R. Fisher,et al.  The biology of hydrothermal vent animals: physiology, biochemistry, and autotrophic symbioses , 1992 .

[215]  M. Segonzac Les peuplements associés à l'hydrothermalisme océanique du snake Pit (dorsale médio-atlantique; 23°N, 3480 m): composition et microdistribution de la mégafaune , 1992 .

[216]  V. Tunnicliffe The biology of hydrothermal vents : Ecology and evolution , 1991 .

[217]  K. V. Damm,et al.  SEAFLOOR HYDROTHERMAL ACTIVITY: BLACK SMOKER CHEMISTRY AND CHIMNEYS , 1990 .

[218]  John Whitehead,et al.  Scientific Rationale for Establishing Long-Term Ocean Bottom Observatory/Laboratory Systems , 1987 .

[219]  Steven D. Scott,et al.  Seafloor Polymetallic Sulfides: Scientific Curiosities or Mines of the Future? , 1987 .

[220]  H. Bäcker,et al.  Recent Hydrothermal Metal Accumulation, Products and Conditions of Formation , 1987 .

[221]  G. Gross,et al.  Metallic minerals on the deep seabed , 1987 .

[222]  J. Lupton,et al.  Hydrothermal vents on an axis seamount of the Juan de Fuca ridge , 1985, Nature.

[223]  Peter A. Rona,et al.  Hydrothermal mineralization at seafloor spreading centers , 1984 .

[224]  Denis Norton,et al.  Theory of Hydrothermal Systems , 1984 .

[225]  H. Jannasch Microbial Processes at Deep Sea Hydrothermal Vents , 1983 .

[226]  K. V. Damm,et al.  Preliminary Report on the Chemistry of Hydrothermal Solutions at 21° North, East Pacific Rise , 1983 .

[227]  K. Macdonald A Geophysical Comparison between Fast and Slow Spreading Centers: Constraints on Magma Chamber Formation and Hydrothermal Activity , 1983 .

[228]  C. Lister The Basic Physics of Water Penetration into Hot Rock , 1983 .

[229]  G. Thompson Basalt — Seawater Interaction , 1983 .

[230]  R. Holcomb,et al.  Kilauea Volcano, Hawaii : chronology and morphology of the surficial lava flow , 1981 .

[231]  J. Coulomb Heat Flow through the Ocean Floor , 1972 .

[232]  F. Ostapoff A Fourth Brine Hole in the Red Sea , 1969 .

[233]  E. M. Thorndike,et al.  Suspended Matter in the Red Sea Brines and Its Detection by Light Scattering , 1969 .

[234]  G. Krause,et al.  The Observations of the Vertical Structure of Hot Salty Water by R.V. METEOR , 1969 .

[235]  A. Miller ATLANTIS II Account , 1969 .

[236]  J. Swallow History of the Exploration of the Hot Brine Area of the Red Sea: DISCOVERY Account , 1969 .

[237]  R. B. Sosman Symposium on hot springs , 2022 .

[238]  R. B. Sosman An Outline of Geophysical-Chemical Problems. , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[239]  H. S. Washington The problems of volcanology , 2022 .