A Leaky Integrate-and-Fire Laser Neuron for Ultrafast Cognitive Computing

We propose an original design for a neuron-inspired photonic computational primitive for a large-scale, ultrafast cognitive computing platform. The laser exhibits excitability and behaves analogously to a leaky integrate-and-fire (LIF) neuron. This model is both fast and scalable, operating up to a billion times faster than a biological equivalent and is realizable in a compact, vertical-cavity surface-emitting laser (VCSEL). We show that-under a certain set of conditions-the rate equations governing a laser with an embedded saturable absorber reduces to the behavior of LIF neurons. We simulate the laser using realistic rate equations governing a VCSEL cavity, and show behavior representative of cortical spiking algorithms simulated in small circuits of excitable lasers. Pairing this technology with ultrafast, neural learning algorithms would open up a new domain of processing.

[1]  Yue Tian,et al.  Pulse lead/lag timing detection for adaptive feedback and control based on optical spike-timing-dependent plasticity. , 2013, Optics letters.

[2]  Botond Szatmáry,et al.  Spike-Timing Theory of Working Memory , 2010, PLoS Comput. Biol..

[3]  Sylvain Barbay,et al.  Excitability in a semiconductor laser with saturable absorber. , 2011, Optics letters.

[4]  Joseph M. Kahn,et al.  Differential pulse-position modulation for power-efficient optical communication , 1999, IEEE Trans. Commun..

[5]  Connie J. Chang-Hasnain,et al.  Variable optical buffer using slow light in semiconductor nanostructures , 2003, SPIE OPTO.

[6]  Andreas Mayr,et al.  CrossNets: High‐Performance Neuromorphic Architectures for CMOL Circuits , 2003, Annals of the New York Academy of Sciences.

[7]  Yuji Ikegaya,et al.  Synfire Chains and Cortical Songs: Temporal Modules of Cortical Activity , 2004, Science.

[8]  Andrei Grebennikov Wiley Series in Microwave and Optical Engineering , 2011 .

[9]  A. N. Tait,et al.  The DREAM: An Integrated Photonic Thresholder , 2013, Journal of Lightwave Technology.

[10]  Kevin L. Lear,et al.  Differential carrier lifetime in oxide-confined vertical cavity lasers obtained from electrical impedance measurements , 1999 .

[11]  E. Bienenstock A model of neocortex , 1995 .

[12]  Rüdiger Paschotta,et al.  Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers , 2001 .

[13]  Mindaugas Radziunas,et al.  Excitability of lasers with integrated dispersive reflector , 2001, SPIE OPTO.

[14]  Antonio Hurtado,et al.  Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems , 2012 .

[15]  T. Krauss,et al.  An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers , 2002 .

[16]  P. Jonker,et al.  A defect-?and fault-tolerant architecture for nanocomputers , 2003 .

[17]  Giovanni Giacomelli,et al.  Andronov bifurcation and excitability in semiconductor lasers with optical feedback , 1997 .

[18]  C. Chen,et al.  Circuit Modeling of Carrier–Photon Dynamics in Composite-Resonator Vertical-Cavity Lasers , 2011, IEEE Journal of Quantum Electronics.

[19]  Christof Koch,et al.  Biophysics of Computation: Information Processing in Single Neurons (Computational Neuroscience Series) , 1998 .

[20]  Dharmendra S. Modha,et al.  A digital neurosynaptic core using embedded crossbar memory with 45pJ per spike in 45nm , 2011, 2011 IEEE Custom Integrated Circuits Conference (CICC).

[21]  H. Lin,et al.  VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings , 2004 .

[22]  Paul R. Prucnal,et al.  Lightwave neuromorphic signal processing , 2011, 2011 ICO International Conference on Information Photonics.

[23]  Andreas G. Andreou,et al.  Current-mode subthreshold MOS circuits for analog VLSI neural systems , 1991, IEEE Trans. Neural Networks.

[24]  Ennio Mingolla,et al.  From Synapses to Circuitry: Using Memristive Memory to Explore the Electronic Brain , 2011, Computer.

[25]  Rahul Sarpeshkar,et al.  Analog Versus Digital: Extrapolating from Electronics to Neurobiology , 1998, Neural Computation.

[26]  Paul R Prucnal,et al.  A high performance photonic pulse processing device. , 2009, Optics express.

[27]  F. Xia,et al.  Ultracompact optical buffers on a silicon chip , 2007 .

[28]  J. Danckaert,et al.  Solitary and coupled semiconductor ring lasers as optical spiking neurons. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Paul R. Prucnal,et al.  Highly Scalable Adaptive Photonic Beamformer Using a Single Mode to Multimode Optical Combiner , 2013, IEEE Microwave and Wireless Components Letters.

[30]  G. Van der Sande,et al.  Semiconductor ring lasers as optical neurons , 2012, IEEE Photonics Conference 2012.

[31]  Fumio Koyama,et al.  Recent advances in VCSEL photonics , 2006, 16th Opto-Electronics and Communications Conference.

[32]  Kwabena Boahen NEUROGRID: Emulating a million neurons in the cortex , 2010, Neuroscience Research.

[33]  Adam Prügel-Bennett,et al.  Analysis of synfire chains , 1995 .

[34]  G. Snider,et al.  Self-organized computation with unreliable, memristive nanodevices , 2007 .

[35]  Yong Liu,et al.  A 45nm CMOS neuromorphic chip with a scalable architecture for learning in networks of spiking neurons , 2011, 2011 IEEE Custom Integrated Circuits Conference (CICC).

[36]  P. Prucnal,et al.  Experimental characterization of simultaneous gain pumping and depletion in a semiconductor optical amplifier , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[37]  Yue Tian,et al.  Signal feature recognition based on lightwave neuromorphic signal processing. , 2011, Optics letters.

[38]  B. Krauskopf,et al.  Self-pulsations of lasers with saturable absorber: dynamics and bifurcations , 1999 .

[39]  L. Sekaric,et al.  Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. , 2007, Optics express.

[40]  Leslie S. Smith,et al.  Neuromorphic Systems: Engineering Silicon from Neurobiology , 1998 .

[41]  Eugene M. Izhikevich,et al.  Which model to use for cortical spiking neurons? , 2004, IEEE Transactions on Neural Networks.

[42]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[43]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[44]  Moshe Abeles,et al.  Corticonics: Neural Circuits of Cerebral Cortex , 1991 .

[45]  Y Li,et al.  VCSEL-array-based angle-multiplexed optoelectronic crossbar interconnects. , 1996, Applied optics.

[46]  Kwabena Boahen,et al.  Communicating neuronal ensembles between neuromorphic chips , 1998 .

[47]  Yue Tian,et al.  Asynchronous spiking photonic neuron for lightwave neuromorphic signal processing. , 2012, Optics letters.

[48]  Paul R Prucnal,et al.  Ultrafast all-optical implementation of a leaky integrate-and-fire neuron. , 2011, Optics express.

[49]  Arnaud Delorme,et al.  Spike-based strategies for rapid processing , 2001, Neural Networks.

[50]  Christopher J. Bishop,et al.  Pulsed Neural Networks , 1998 .

[51]  Eugene M. Izhikevich,et al.  Polychronization: Computation with Spikes , 2006, Neural Computation.

[52]  Sebastian Wieczorek,et al.  Excitability and self-pulsations near homoclinic bifurcations in semiconductor laser systems , 2003 .

[53]  Hans Wenzel,et al.  Mechanisms of fast self pulsations in two-section DFB lasers , 1996 .

[54]  Nikolai F. Rulkov,et al.  Chaotic pulse position modulation: a robust method of communicating with chaos , 2000, IEEE Communications Letters.

[55]  M. A. Fisher,et al.  Self-pulsations in vertical-cavity surface emitting lasers , 1995 .

[56]  Chris Eliasmith,et al.  A Unified Approach to Building and Controlling Spiking Attractor Networks , 2005, Neural Computation.

[57]  Benjamin Schrauwen,et al.  Toward optical signal processing using photonic reservoir computing. , 2008, Optics express.