Drag reduction for viscous laminar flow on spray-coated non-wetting surfaces

We estimate the effective Navier-slip length for flow over a spray-fabricated liquid-repellent surface which supports a composite solid–air–liquid interface or ‘Cassie–Baxter’ state. The morphology of the coated substrate consists of randomly distributed corpuscular microstructures which encapsulate a film of trapped air (or ‘plastron’) upon contact with liquid. The reduction in viscous skin friction due to the plastron is evaluated using torque measurements in a parallel plate rheometer resulting in a measured slip length of bslip ≈ 39 μm, comparable to the mean periodicity of the microstructure evaluated from confocal fluorescence microscopy. The introduction of a large primary length-scale using dual-textured spray-coated meshes increases the magnitude of the effective slip length to values in the range 94 μm ≤ bslip ≤ 213 μm depending on the geometric features of the mesh. The wetted solid fractions on each mesh are calculated from free surface simulations on model sinusoidal mesh geometries. The trend in measured values of bslip with the mesh periodicity L and the computed wetted solid-fraction rϕs are found to be consistent with existing analytic predictions.

[1]  R. Netz,et al.  Water slippage versus contact angle: a quasiuniversal relationship. , 2008, Physical review letters.

[2]  Gareth H McKinley,et al.  Scale dependence of omniphobic mesh surfaces. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[3]  Michael D. Abràmoff,et al.  Image processing with ImageJ , 2004 .

[4]  Zhou Ming,et al.  Fluid drag reduction on superhydrophobic surfaces coated with carbon nanotube forests (CNTs) , 2011 .

[5]  Christophe Ybert,et al.  Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries , 2007 .

[6]  J. Rothstein Slip on Superhydrophobic Surfaces , 2010 .

[7]  《科 学通报》编辑部,et al.  Chinese Science Bulletin 第二届“受关注论文”评选揭晓 , 2011 .

[8]  Lydéric Bocquet,et al.  Flow boundary conditions from nano- to micro-scales. , 2006, Soft matter.

[9]  Chih-Ming Ho,et al.  Effective slip and friction reduction in nanograted superhydrophobic microchannels , 2006 .

[10]  A. Vij,et al.  Fluorinated polyhedral oligomeric silsesquioxanes (F-POSS). , 2008, Angewandte Chemie.

[11]  Chang-Hwan Choi,et al.  Structured surfaces for a giant liquid slip. , 2008, Physical review letters.

[12]  Christopher W. Macosko,et al.  Rheology: Principles, Measurements, and Applications , 1994 .

[13]  Hiroshi Udagawa,et al.  Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall , 1999, Journal of Fluid Mechanics.

[14]  Lei Jiang,et al.  A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. , 2004, Angewandte Chemie.

[15]  Andrea Mammoli,et al.  Effective slip on textured superhydrophobic surfaces , 2005 .

[16]  Michael I. Newton,et al.  Superhydrophobic copper tubes with possible flow enhancement and drag reduction. , 2009, ACS applied materials & interfaces.

[17]  J. Stokes,et al.  On the gap error in parallel plate rheometry that arises from the presence of air when zeroing the gap , 2005 .

[18]  G. McKinley,et al.  The flexure-based microgap rheometer (FMR) , 2006 .

[19]  S. Wereley,et al.  soft matter , 2019, Science.

[20]  C. Meinhart,et al.  Apparent fluid slip at hydrophobic microchannel walls , 2002 .

[21]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[22]  Lloyd L. Lee,et al.  Review of Fluid Slip over Superhydrophobic Surfaces and Its Dependence on the Contact Angle , 2008 .

[23]  L. Cai,et al.  On the measurement of slip length for liquid flow over super-hydrophobic surface , 2009 .

[24]  P. Moin,et al.  Annual Review of Fluid Mechanics , 1994 .

[25]  J. Barrat,et al.  Dynamics of simple liquids at heterogeneous surfaces: Molecular-dynamics simulations and hydrodynamic description , 2004, The European physical journal. E, Soft matter.

[26]  Curtiss,et al.  Dynamics of Polymeric Liquids , .

[27]  G. McHale,et al.  Plastron induced drag reduction and increased slip on a superhydrophobic sphere , 2011 .

[28]  Lydéric Bocquet,et al.  Large Slip Effect at a Nonwetting Fluid-Solid Interface , 1999 .

[29]  C. Wang,et al.  Apparent slip arising from Stokes shear flow over a bidimensional patterned surface , 2010 .

[30]  Shreerang S. Chhatre,et al.  Solution spraying of poly(methyl methacrylate) blends to fabricate microtextured, superoleophobic surfaces , 2011 .

[31]  C. Wang,et al.  Stokes shear flow over a grating: Implications for superhydrophobic slip , 2009 .

[32]  A Amirfazli,et al.  The Cassie equation: how it is meant to be used. , 2012, Advances in colloid and interface science.

[33]  M. Bazant,et al.  Effective slip boundary conditions for arbitrary periodic surfaces: the surface mobility tensor , 2009, Journal of Fluid Mechanics.

[34]  Matteo Ciccotti,et al.  Design principles for superamphiphobic surfaces , 2013 .

[35]  Olga I. Vinogradova,et al.  Wetting, roughness and flow boundary conditions , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  Eric Lauga,et al.  A smooth future? , 2011, Nature materials.

[37]  A. Yoshimura,et al.  Wall Slip Corrections for Couette and Parallel Disk Viscometers , 1988 .

[38]  Julia M. Yeomans,et al.  Impalement of fakir drops , 2007 .

[39]  W. Sharpe Springer Handbook of Experimental Solid Mechanics , 2008 .

[40]  Herbert E. Huppert,et al.  Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences , 2006 .

[41]  Gareth H McKinley,et al.  Robust omniphobic surfaces , 2008, Proceedings of the National Academy of Sciences.

[42]  Robert C. Armstrong,et al.  Dynamics of polymeric liquids: Fluid mechanics , 1987 .

[43]  François Feuillebois,et al.  Effective slip over superhydrophobic surfaces in thin channels. , 2008, Physical review letters.

[44]  Eric Lauga,et al.  The friction of a mesh-like super-hydrophobic surface , 2009, 0911.2954.

[45]  Howard A. Stone,et al.  Effective slip in pressure-driven Stokes flow , 2003, Journal of Fluid Mechanics.

[46]  M. Gad-el-Hak,et al.  Modeling drag reduction and meniscus stability of superhydrophobic surfaces comprised of random roughness , 2011 .

[47]  Taechang An,et al.  Preparation of stable superhydrophobic mesh with a biomimetic hierarchical structure , 2011 .

[48]  Gareth H. McKinley,et al.  High shear rate viscometry , 2008 .

[49]  Società italiana di fisica,et al.  The European physical journal. E, Soft matter , 2000 .

[50]  Chang-Hwan Choi,et al.  Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. , 2006, Physical review letters.

[51]  M. Sbragaglia,et al.  Effective velocity boundary condition at a mixed slip surface , 2007 .

[52]  R. Grimshaw Journal of Fluid Mechanics , 1956, Nature.

[53]  Wouter van der Wijngaart,et al.  Sustained superhydrophobic friction reduction at high liquid pressures and large flows. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[54]  A. Cassie,et al.  Wettability of porous surfaces , 1944 .

[55]  J. Rothstein,et al.  Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces , 2005 .

[56]  D. Quéré Wetting and Roughness , 2008 .

[57]  Eric Lauga,et al.  Hydrodynamic friction of fakir-like superhydrophobic surfaces , 2010, Journal of Fluid Mechanics.

[58]  J. R. Philip Flows satisfying mixed no-slip and no-shear conditions , 1972 .

[59]  B. Costello The ARG 2 Magnetic Bearing Rheometer , 2022 .

[60]  Carl D. Meinhart,et al.  A generating mechanism for apparent fluid slip in hydrophobic microchannels , 2004 .

[61]  David Quéré,et al.  Non-adhesive lotus and other hydrophobic materials , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[62]  Gareth H. McKinley,et al.  Designing Superoleophobic Surfaces , 2007, Science.

[63]  Jonathan P. Rothstein,et al.  Drag reduction in turbulent flows over superhydrophobic surfaces , 2009 .

[64]  Chang-Jin C J Kim,et al.  Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[65]  L. Léger,et al.  Direct experimental evidence of slip in hexadecane: solid interfaces , 2000, Physical review letters.

[66]  On Fluid/Wall Slippage , 2001, cond-mat/0112383.

[67]  Kenneth A. Brakke,et al.  The Surface Evolver and the stability of liquid surfaces , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[68]  G. McHale,et al.  Terminal velocity and drag reduction measurements on superhydrophobic spheres , 2009 .

[69]  Chang-Jin Kim,et al.  Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction. , 2011, Physical review letters.

[70]  Andrea Mammoli,et al.  Drag reduction on a patterned superhydrophobic surface. , 2006, Physical review letters.

[71]  Blair Perot,et al.  Laminar drag reduction in microchannels using ultrahydrophobic surfaces , 2004 .