Microstructural Degradation of Ni/YSZ Electrodes in Solid Oxide Electrolysis Cells under High Current

Summary In this work, formation of ZrO 2 nano-particles on Ni grains wasobserved in the active Ni/YSZ electrode, only in the region close tothe cathode-electrolyte interface, i.e. where one will find the most re-ducing conditions in the Ni/YSZ electrode during electrolysis testing.The ZrO 2 nano-particles are observed in cells tested at current den-sity equal to or above −1 A/cm 2 , but not in non-tested cells or cellstested at lower current density. The harsher the conditions (in terms ofcathode polarization, temperature, and testing period), the larger theabundance of the ZrO 2 particles.It is emphasized that Zr reduction may occur at a much higher p (O 2 ) in the presence of Ni than when in pure ZrO 2 (orYSZ)form.The threshold value is around 3.2 ×10 −29 ± 3 bar at 850 ◦ C, assumingan error range of 50 kJ/mol for G of Reaction 1. The observation ofa clear correlation with cathode polarization and the observation of avariety of Zr/Y ratios from the bulk YSZ to the ZrO 2 nano-particlesformed at the Ni-YSZ or Ni-pore interface support qualitatively theformulatedhypothesisfortheformationmechanismbeingareduction,followed by solid diffusion and re-precipitation at sites with higher

[1]  R. Huggins Solid State Ionics , 1989 .

[2]  S. Ebbesen,et al.  Co-Electrolysis of Steam and Carbon Dioxide in Solid Oxide Cells , 2012 .

[3]  Ellen Ivers-Tiffée,et al.  Performance Enhancement of SOFC Anode Through Electrochemically Induced Ni/YSZ Nanostructures , 2011 .

[4]  T. Wagner,et al.  Electrochemically-induced reactions at Ni/ZrO2 interfaces , 1992 .

[5]  K. Lackner,et al.  Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy , 2011 .

[6]  Performance and Durability of Solid Oxide Electrolysis Cells for Syngas Production , 2012 .

[7]  E. Kemnitz,et al.  Oxidation activity and 18O-isotope exchange behavior of nickel oxide-stabilized cubic zirconia , 2004 .

[8]  W. Boettinger,et al.  Development of a Diffusion Mobility Database for Co-Based Superalloys , 2002, Journal of Phase Equilibria and Diffusion.

[9]  M. Zahid,et al.  High temperature water electrolysis in solid oxide cells , 2008 .

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  Brian M. Tissue,et al.  Energy Crossovers in Nanocrystalline Zirconia , 2004 .

[12]  A. Hagen,et al.  Properties and Performance of SOFCs Produced on a Pre‐Pilot Plant Scale , 2006 .

[13]  Mogens Bjerg Mogensen,et al.  Poisoning of Solid Oxide Electrolysis Cells by Impurities , 2010 .

[14]  A. C. Bose,et al.  Formability of metastable tetragonal solid solution in nanocrystalline NiO–ZrO2 powders , 2000 .

[15]  K. Thydén,et al.  Microstructural characterization of SOFC Ni–YSZ anode composites by low-voltage scanning electron microscopy , 2008 .

[16]  M. Medraj,et al.  A critical thermodynamic assessment of the Mg–Ni, Ni–Y binary and Mg–Ni–Y ternary systems , 2009 .

[17]  S. Ebbesen,et al.  Exceptional Durability of Solid Oxide Cells , 2010 .

[18]  M. Mogensen,et al.  TOF‐SIMS studies of yttria‐stabilised zirconia , 2006 .

[19]  Jong-Wan Park,et al.  The diffusion and solubility of oxygen in solid nickel , 1987 .

[20]  F. Tietz,et al.  Degradation phenomena in a solid oxide electrolysis cell after 9000 h of operation , 2013 .

[21]  A. Revcolevschi,et al.  Kinetics and Mechanism of the Reduction of Nickel Oxide in Aligned Nickel Oxide-Zirconia and Nickel Oxide-Yttria Eutectic Structures , 1990 .

[22]  S. Jensen,et al.  Solid Oxide Electrolysis Cells: Microstructure and Degradation of the Ni/Yttria-Stabilized Zirconia Electrode , 2008 .

[23]  J. Kilner,et al.  Electrolyte degradation in anode supported microtubular yttria stabilized zirconia-based solid oxide , 2011 .

[24]  P. Shen,et al.  Phase equilibria of zirconia-dispersed ceramic in NiOAl2O3ZrO2 system , 1991 .

[25]  Qingxi Fu,et al.  Syngas production via high-temperature steam/CO2 co-electrolysis: an economic assessment , 2010 .

[26]  Gunnar Eriksson,et al.  FactSage thermochemical software and databases , 2002 .

[27]  E. Rideal,et al.  Fuel Cells , 1958, Nature.

[28]  G. Duscher,et al.  Decomposition of the ZrO_2 electrolyte in contact with Ni: Structure and chemical composition of the Ni–electrolyte interface , 1999 .

[29]  Xiufu Sun,et al.  Influence of the oxygen electrode and inter-diffusion barrier on the degradation of solid oxide electrolysis cells , 2013 .

[30]  S. Ebbesen,et al.  Solid Oxide Electrolysis Cells: Degradation at High Current Densities , 2010 .

[31]  P. Spencer,et al.  Thermodynamic reevaluation of the C-O, Fe-O and Ni-O systems: Remodelling of the liquid, BCC and FCC phases , 1995 .