Latent Dirichlet allocation model for world trade analysis

International trade is one of the classic areas of study in economics. Its empirical analysis is a complex problem, given the amount of products, countries and years. Nowadays, given the availability of data, the tools used for the analysis can be complemented and enriched with new methodologies and techniques that go beyond the traditional approach. This new possibility opens a research gap, as new, data-driven, ways of understanding international trade, can help our understanding of the underlying phenomena. The present paper shows the application of the Latent Dirichlet allocation model, a well known technique in the area of Natural Language Processing, to search for latent dimensions in the product space of international trade, and their distribution across countries over time. We apply this technique to a dataset of countries’ exports of goods from 1962 to 2016. The results show that this technique can encode the main specialisation patterns of international trade. On the country-level analysis, the findings show the changes in the specialisation patterns of countries over time. As traditional international trade analysis demands expert knowledge on a multiplicity of indicators, the possibility of encoding multiple known phenomena under a unique indicator is a powerful complement for traditional tools, as it allows top-down data-driven studies.

[1]  Mason A. Porter,et al.  Multilayer networks , 2013, J. Complex Networks.

[2]  Guido Caldarelli,et al.  Grand canonical validation of the bipartite international trade network. , 2017, Physical review. E.

[3]  B. Balassa Trade Liberalisation and “Revealed” Comparative Advantage , 1965 .

[4]  César A. Hidalgo The Dynamics of Economic Complexity and the Product Space over a 42 year period , 2009 .

[5]  P. Dicken,et al.  ‘Globalizing’ regional development: a global production networks perspective , 2004 .

[6]  Charu C. Aggarwal,et al.  On the Surprising Behavior of Distance Metrics in High Dimensional Spaces , 2001, ICDT.

[7]  Dima Shepelyansky,et al.  Ecological analysis of world trade , 2012, ArXiv.

[8]  M. Clark,et al.  Impacts of internal and external policies on land change in Uruguay, 2001–2009 , 2012, Environmental Conservation.

[9]  Guido Caldarelli,et al.  Scale-Free Networks , 2007 .

[10]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[11]  Lawrence K. Saul,et al.  A Probabilistic Topic Model for Music Analysis , 2009 .

[12]  G. Gereffi,et al.  The governance of global value chains , 2005 .

[13]  Neelamadhab Padhy,et al.  The Survey of Data Mining Applications And Feature Scope , 2012, ArXiv.

[14]  P. Carmody The Oil Curse: How petroleum wealth shapes the development of nations , 2013 .

[15]  Danielle S. McNamara,et al.  Handbook of latent semantic analysis , 2007 .

[16]  Guido Caldarelli,et al.  A Network Analysis of Countries’ Export Flows: Firm Grounds for the Building Blocks of the Economy , 2011, PloS one.

[17]  E. Penrose,et al.  The oil “crisis” , 1974 .

[18]  G. Gereffi The Organization of Buyer-Driven Global Commodity Chains: How U.S. Retailers Shape Overseas Production Networks. , 1994 .

[19]  Shrikanth S. Narayanan,et al.  Acoustic topic model for audio information retrieval , 2009, 2009 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.

[20]  Vito Latora,et al.  Structural measures for multiplex networks. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Carmem Feijó Desarrollo, vaivenes y desigualdad: una historia económica de América Latina desde la independencia , 2018 .

[22]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[23]  A. Barabasi,et al.  The network takeover , 2011, Nature Physics.

[24]  Sanjaya Lall,et al.  The “sophistication” of exports: A new trade measure , 2006 .

[25]  Pietro Perona,et al.  A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[26]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[27]  Francisco Aparecido Rodrigues,et al.  The nested structural organization of the worldwide trade multi-layer network , 2018, Scientific Reports.

[28]  Xiaoyu Xu,et al.  Measurement and simulation of the relatively competitive advantages and weaknesses between economies based on bipartite graph theory , 2018, PloS one.

[29]  César A. Hidalgo,et al.  The Product Space Conditions the Development of Nations , 2007, Science.

[30]  Dragomir R. Radev,et al.  How to Analyze Political Attention with Minimal Assumptions and Costs , 2010 .

[31]  Giorgio Fagiolo,et al.  Null models of economic networks: the case of the world trade web , 2011, 1112.2895.

[32]  David Hummels,et al.  Alternative Hypotheses and the Volume of Trade: The Gravity Equation and the Extent of Specialization , 2004 .

[33]  Tanya Araújo,et al.  The topology of African exports: Emerging patterns on spanning trees , 2016 .

[34]  Antonino Fiannaca,et al.  Probabilistic topic modeling for the analysis and classification of genomic sequences , 2015, BMC Bioinformatics.

[35]  César A. Hidalgo,et al.  The building blocks of economic complexity , 2009, Proceedings of the National Academy of Sciences.

[36]  Bill Pritchard,et al.  THE GOVERNANCE OF GLOBAL VALUE CHAINS , 2017 .

[37]  B. Balassa The changing international division of labor in manufactured goods , 1979 .

[38]  Sanjaya Lall,et al.  The Technological Structure and Performance of Developing Country Manufactured Exports, 1985‐98 , 2000 .

[39]  Guido Caldarelli,et al.  Scale-Free Networks , 2007 .

[40]  Justin Grimmer,et al.  Elevated threat levels and decreased expectations: How democracy handles terrorist threats , 2013 .

[41]  Agostina Costantino ¿Gatopardismo sojero?: Los efectos de la bonanza sojera sobre el cambio estructural en Argentina y Brasil , 2013 .