Galerkin finite element method and error analysis for the fractional cable equation

The cable equation is one of the most fundamental equations for modeling neuronal dynamics. These equations can be derived from the Nernst-Planck equation for electro-diffusion in smooth homogeneous cylinders. Fractional cable equations are introduced to model electrotonic properties of spiny neuronal dendrites. In this paper, a Galerkin finite element method(GFEM) is presented for the numerical simulation of the fractional cable equation(FCE) involving two integro-differential operators. The proposed method is based on a semi-discrete finite difference approximation in time and Galerkin finite element method in space. We prove that the numerical solution converges to the exact solution with order O(τ+hl+1) for the lth-order finite element method. Further, a novel Galerkin finite element approximation for improving the order of convergence is also proposed. Finally, some numerical results are given to demonstrate the theoretical analysis. The results show that the numerical solution obtained by the improved Galerkin finite element approximation converges to the exact solution with order O(τ2+hl+1).

[1]  Fawang Liu,et al.  New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..

[2]  Changpin Li,et al.  A note on the finite element method for the space-fractional advection diffusion equation , 2010, Comput. Math. Appl..

[3]  S. Wearne,et al.  Fractional cable models for spiny neuronal dendrites. , 2008, Physical review letters.

[4]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[5]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[6]  Fawang Liu,et al.  Numerical solution of the space fractional Fokker-Planck equation , 2004 .

[7]  Fawang Liu,et al.  A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..

[8]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[9]  William McLean,et al.  Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation , 2009, Numerical Algorithms.

[10]  Yangquan Chen,et al.  Computers and Mathematics with Applications Numerical Approximation of Nonlinear Fractional Differential Equations with Subdiffusion and Superdiffusion , 2022 .

[11]  J. Bisquert Fractional diffusion in the multiple-trapping regime and revision of the equivalence with the continuous-time random walk. , 2003, Physical review letters.

[12]  Eduardo Cuesta,et al.  Convolution quadrature time discretization of fractional diffusion-wave equations , 2006, Math. Comput..

[13]  Fawang Liu,et al.  Numerical simulation for solute transport in fractal porous media , 2004 .

[14]  Fawang Liu,et al.  Approximation of the Lévy-Feller advection-dispersion process by random walk and finite difference method , 2007, J. Comput. Phys..

[15]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[16]  Enrico Scalas,et al.  Coupled continuous time random walks in finance , 2006 .

[17]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[18]  W. Rall Cable theory for dendritic neurons , 1989 .

[19]  A. Compte,et al.  Generalized Diffusion−Advection Schemes and Dispersive Sedimentation: A Fractional Approach† , 2000 .

[20]  Mihály Kovács,et al.  Numerical solutions for fractional reaction-diffusion equations , 2008, Comput. Math. Appl..

[21]  E. Schutter,et al.  Anomalous Diffusion in Purkinje Cell Dendrites Caused by Spines , 2006, Neuron.

[22]  Fawang Liu,et al.  Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term , 2009, J. Comput. Appl. Math..

[23]  Fawang Liu,et al.  Implicit difference approximation of the Galilei invariant fractional advection diffusion equation , 2007 .

[24]  C. Bernardi,et al.  Approximations spectrales de problèmes aux limites elliptiques , 2003 .

[25]  V. Thomée Galerkin Finite Element Methods for Parabolic Problems (Springer Series in Computational Mathematics) , 2010 .

[26]  Santos B. Yuste,et al.  On an explicit finite difference method for fractional diffusion equations , 2003, ArXiv.

[27]  W. Rall Branching dendritic trees and motoneuron membrane resistivity. , 1959, Experimental neurology.

[28]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[29]  S. Wearne,et al.  Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions , 2009, Journal of mathematical biology.

[30]  W. Rall Core Conductor Theory and Cable Properties of Neurons , 2011 .

[31]  J. P. Roop Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R 2 , 2006 .

[32]  Xianjuan Li,et al.  Finite difference/spectral approximations for the fractional cable equation , 2010, Math. Comput..

[33]  Katja Lindenberg,et al.  Reaction front in an A+B-->C reaction-subdiffusion process. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.