Projection and Analysis of Extreme Wave Climate

Abstract The nonhomogeneous Poisson process is used to model extreme values of the 40-yr ECMWF Re-Analysis (ERA-40) significant wave height. The parameters of the model are expressed as functions of the seasonal mean sea level pressure anomaly and seasonal squared sea level pressure gradient index. Using projections of the sea level pressure under three different forcing scenarios by the Canadian coupled climate model, projections of the parameters of the nonhomogeneous Poisson process are made, trends in these projections are determined, return-value estimates of significant wave height up to the end of the twenty-first century are projected, and their uncertainties are assessed. The uncertainty of estimates associated with the nonhomogeneous Poisson process estimates is studied and compared with the homologous estimates obtained using a nonstationary generalized extreme value model.

[1]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[2]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[3]  S. Coles,et al.  An Introduction to Statistical Modeling of Extreme Values , 2001 .

[4]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[5]  J. Rice Mathematical Statistics and Data Analysis , 1988 .

[6]  Xiaolan L. Wang,et al.  Climate change signal and uncertainty in projections of ocean wave heights , 2006 .

[7]  B. Jørgensen,et al.  The theory of linear models , 1995 .

[8]  Andrew T. Cox,et al.  On the Use of NCEP–NCAR Reanalysis Surface Marine Wind Fields for a Long-Term North Atlantic Wave Hindcast , 2000 .

[9]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[10]  Richard L. Smith Extreme Value Analysis of Environmental Time Series: An Application to Trend Detection in Ground-Level Ozone , 1989 .

[11]  G. Boer,et al.  Warming asymmetry in climate change simulations , 2001 .

[12]  Francis W. Zwiers,et al.  North Atlantic Ocean Wave Climate Change Scenarios for the Twenty-First Century , 2004 .

[13]  R. E. Livezey,et al.  Statistical Field Significance and its Determination by Monte Carlo Techniques , 1983 .

[14]  A. Sterl,et al.  Intercomparison of Different Wind–Wave Reanalyses , 2004 .

[15]  George A. F. Seber,et al.  Linear regression analysis , 1977 .

[16]  Andrew T. Cox,et al.  A global wave hindcast over the period 1958–1997: Validation and climate assessment , 2001 .

[17]  V. R. Swail,et al.  Historical And Possible Future Changes OfWave Heights In Northern Hemisphere Oceans , 2006 .

[18]  H. Storch,et al.  Statistical Analysis in Climate Research , 2000 .

[19]  S. Caires,et al.  100-Year Return Value Estimates for Ocean Wind Speed and Significant Wave Height from the ERA-40 Data , 2005 .

[20]  Xiaolan L. Wang,et al.  Changes of Extreme Wave Heights in Northern Hemisphere Oceans and Related Atmospheric Circulation Regimes , 2001 .

[21]  G. Boer,et al.  A transient climate change simulation with greenhouse gas and aerosol forcing: experimental design and comparison with the instrumental record for the twentieth century , 2000 .