Sensitivity of a dynamic global vegetation model to climate and atmospheric CO2

The equilibrium carbon storage capacity of the terrestrial biosphere has been investigated by running the Lund–Potsdam–Jena Dynamic Global Vegetation Model to equilibrium for a range of CO2 concentrations and idealized climate states. Local climate is defined by the combination of an observation‐based climatology and perturbation patterns derived from a 4 × CO2 warming simulations, which are linearly scaled to global mean temperature deviations, ΔTglob. Global carbon storage remains close to its optimum for ΔTglob in the range of ±3°C in simulations with constant atmospheric CO2. The magnitude of the carbon loss to the atmosphere per unit change in global average surface temperature shows a pronounced nonlinear threshold behavior. About twice as much carbon is lost per degree warming for ΔTglob above 3°C than for present climate. Tropical, temperate, and boreal trees spread poleward with global warming. Vegetation dynamics govern the distribution of soil carbon storage and turnover in the climate space. For cold climate conditions, the global average decomposition rate of litter and soil decreases with warming, despite local increases in turnover rates. This result is not compatible with the assumption, commonly made in global box models, that soil turnover increases exponentially with global average surface temperature, over a wide temperature range.

[1]  Corinne Le Quéré,et al.  Biosphere Dynamics: Challenges for Earth System Models , 2013 .

[2]  Paul J. Valdes,et al.  Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum , 2004 .

[3]  G. Midgley,et al.  Photosynthetic and gas exchange characteristics of dominant woody plants on a moisture gradient in an African savanna , 2004 .

[4]  D. Lüthi,et al.  The role of increasing temperature variability in European summer heatwaves , 2004, Nature.

[5]  J. Berry,et al.  A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species , 1980, Planta.

[6]  Joanna Isobel House,et al.  Biosphere dynamics: challenges for Earth System Models. In C. J. Hawkesworth and R. S. J. Sparks (eds), The State of the Planet: Frontiers and Challenges in Geophysics. , 2004 .

[7]  Christopher B. Field,et al.  Nitrogen and Climate Change , 2003, Science.

[8]  Sandy P. Harrison,et al.  Climate change and Arctic ecosystems: 2. Modeling, paleodata‐model comparisons, and future projections , 2003 .

[9]  Sandy P. Harrison,et al.  Climate change and Arctic ecosystems: 1. Vegetation changes north of 55°N between the last glacial maximum, mid‐Holocene, and present , 2003 .

[10]  Timothy M. Lenton,et al.  Global terrestrial carbon storage and uncertainties in its temperature sensitivity examined with a simple model , 2003 .

[11]  Sandy P. Harrison,et al.  Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations , 2003 .

[12]  Atul K. Jain,et al.  Projecting future climate change: Implications of carbon cycle model intercomparisons , 2003 .

[13]  M. Scholze,et al.  Simulating near-equilibrium climate and vegetation for 6000 cal. years BP , 2003 .

[14]  M. Heimann,et al.  Modelling terrestrial vegetation dynamics and carbon cycling for an abrupt climatic change event , 2003 .

[15]  Christopher B. Field,et al.  Environmental control of leaf area production: Implications for vegetation and land‐surface modeling , 2003 .

[16]  M. Scholze,et al.  Constraining temperature variations over the last millennium by comparing simulated and observed atmospheric CO2 , 2003 .

[17]  E. Rastetter,et al.  Using Mechanistic Models to Scale Ecological Processes across Space and Time , 2003 .

[18]  J. Kutzbach,et al.  A Simulation of the Last Glacial Maximum climate using the NCAR-CCSM , 2003 .

[19]  Stephen Sitch,et al.  Evaluation of terrestrial carbon cycle models with atmospheric CO2 measurements: Results from transient simulations considering increasing CO2, climate, and land‐use effects , 2002 .

[20]  P. Valdes,et al.  Modeling the dynamics of terrestrial carbon storage since the Last Glacial Maximum , 2002 .

[21]  W. Schlesinger,et al.  The nitrogen budget of a pine forest under free air CO2 enrichment , 2002, Oecologia.

[22]  R. B. Jackson,et al.  Nonlinear grassland responses to past and future atmospheric CO2 , 2002, Nature.

[23]  I. C. Prentice,et al.  Growth enhancement due to global atmospheric change as predicted by terrestrial ecosystem models: consistent with US forest inventory data , 2002 .

[24]  L. Hedin,et al.  Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds , 2002, Nature.

[25]  M. Collins,et al.  Projections of future climate change , 2002 .

[26]  Stephen Sitch,et al.  Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) Emission Scenarios , 2001 .

[27]  R. Voss,et al.  Climate Dynamics �2001) 18: 189±202 Ó Springer-Verlag 2001 , 2000 .

[28]  Trevor Platt,et al.  Primary productivity of planet earth: biological determinants and physical constraints in terrestrial and aquatic habitats , 2001 .

[29]  R. Dewar,et al.  Increased understanding of nutrient immobilization in soil organic matter is critical for predicting the carbon sink strength of forest ecosystems over the next 100 years. , 2001, Tree physiology.

[30]  W. Oechel,et al.  FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities , 2001 .

[31]  William H. Schlesinger,et al.  Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2 , 2001, Nature.

[32]  G. Katul,et al.  Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere , 2001, Nature.

[33]  J. Dufresne,et al.  Positive feedback between future climate change and the carbon cycle , 2001 .

[34]  F. Woodward,et al.  Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models , 2001 .

[35]  I. C. Prentice,et al.  Carbon balance of the terrestrial biosphere in the Twentieth Century: Analyses of CO2, climate and land use effects with four process‐based ecosystem models , 2001 .

[36]  R. Voss,et al.  Long-term climate changes due to increased CO2 concentration in the coupled atmosphere-ocean general circulation model ECHAM3/LSG , 2001 .

[37]  C. Field,et al.  Input/Output Balances and Nitrogen Limitation in Terrestrial Ecosystems , 2001 .

[38]  S W Pacala,et al.  Contributions of land-use history to carbon accumulation in U.S. forests. , 2000, Science.

[39]  R. Betts,et al.  Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model , 2000, Nature.

[40]  K. Shine Radiative Forcing of Climate Change , 2000 .

[41]  Andrew D. Friend,et al.  CO2 stabilization, climate change and the terrestrial carbon sink , 2000 .

[42]  C. Covey,et al.  Intercomparison of present and future climates simulated by coupled ocean-atmosphere GCMs , 2000 .

[43]  M. Claussen,et al.  Mid-Holocene greening of the Sahara: first results of the GAIM 6000 year BP Experiment with two asynchronously coupled atmosphere/biome models , 2000 .

[44]  K. Willis,et al.  Effect of global atmospheric carbon dioxide on glacial–interglacial vegetation change , 2000 .

[45]  W. Oechel,et al.  Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming , 2000, Nature.

[46]  Sune Linder,et al.  Botany: Constraints to growth of boreal forests , 2000, Nature.

[47]  R. Dewar,et al.  Soil processes dominate the long-term response of forest net primary productivity to increased temperature and atmospheric CO2 concentration. , 2000 .

[48]  D. Jolly,et al.  Mid‐Holocene and glacial‐maximum vegetation geography of the northern continents and Africa , 2000 .

[49]  Michael G. Ryan,et al.  Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature , 2000, Nature.

[50]  W. Horwath,et al.  Net soil carbon input under ambient and elevated CO2 concentrations: isotopic evidence after 4 years , 2000 .

[51]  G. Meehl,et al.  The Coupled Model Intercomparison Project (CMIP) , 2000 .

[52]  F. Joos,et al.  The substitution of high‐resolution terrestrial biosphere models and carbon sequestration in response to changing CO2 and climate , 1999 .

[53]  F. Joos,et al.  Evaluating timescales of carbon turnover in temperate forest soils with radiocarbon data , 1999 .

[54]  D. Schimel,et al.  Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems , 1999 .

[55]  Finzi,et al.  Net primary production of a forest ecosystem with experimental CO2 enrichment , 1999, Science.

[56]  Martin Wahlen,et al.  Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica , 1999, Nature.

[57]  J. Reynolds,et al.  A search for predictive understanding of plant responses to elevated [CO2] , 1999 .

[58]  K. Hasselmann,et al.  A nonlinear impulse response model of the coupled carbon cycle-ocean-atmosphere climate system , 1999 .

[59]  Y. I Q I L U O,et al.  A search for predictive understanding of plant responses to elevated [ CO 2 ] , 1999 .

[60]  Changhui Peng,et al.  Estimating changes in terrestrial vegetation and carbon storage: Using palaeoecological data and models , 1998 .

[61]  G. Myhre,et al.  New estimates of radiative forcing due to well mixed greenhouse gases , 1998 .

[62]  F. Woodward,et al.  Dynamic responses of terrestrial ecosystem carbon cycling to global climate change , 1998, Nature.

[63]  E. A. O'neill,et al.  A question of litter quality , 1998 .

[64]  I. Prentice,et al.  Biome reconstruction from pollen and plant macrofossil data for Africa and the Arabian peninsula at 0 and 6000 years , 1998 .

[65]  A. Raschi,et al.  Thirty years of in situ tree growth under elevated CO2: a model for future forest responses? , 1997 .

[66]  Edward B. Rastetter,et al.  RESPONSES OF N‐LIMITED ECOSYSTEMS TO INCREASED CO2: A BALANCED‐NUTRITION, COUPLED‐ELEMENT‐CYCLES MODEL , 1997 .

[67]  John F. B. Mitchell,et al.  The second Hadley Centre coupled ocean-atmosphere GCM: model description, spinup and validation , 1997 .

[68]  I. C. Prentice,et al.  BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types , 1996 .

[69]  I. Prentice,et al.  A general model for the light-use efficiency of primary production , 1996 .

[70]  Joyce E. Penner,et al.  Spatial and Temporal Patterns in Terrestrial Carbon Storage Due to Deposition of Fossil Fuel Nitrogen , 1996 .

[71]  R. Amundson,et al.  Rapid Exchange Between Soil Carbon and Atmospheric Carbon Dioxide Driven by Temperature Change , 1996, Science.

[72]  T. Crowley Ice Age terrestrial carbon changes revisited , 1995 .

[73]  Jonathan A. Foley,et al.  An equilibrium model of the terrestrial carbon budget , 1995 .

[74]  John L. Monteith,et al.  Accommodation between transpiring vegetation and the convective boundary layer , 1995 .

[75]  U. Cubasch,et al.  Klimamodelle — wo stehen wir?: Erreichtes und Probleme bei der Vorhersage und dem Nachweis anthropogener Klimaänderungen mit globalen Klimamodellen , 1995 .

[76]  Corinne Le Quéré,et al.  Limiting future atmospheric carbon dioxide , 1995 .

[77]  G. Farquhar,et al.  Terrestrial carbon storage at the LGM , 1994, Nature.

[78]  J. Lloyd,et al.  On the temperature dependence of soil respiration , 1994 .

[79]  D. Schindler,et al.  The biosphere as an increasing sink for atmospheric carbon: Estimates from increased nitrogen depostion , 1993 .

[80]  A. McGuire,et al.  Global climate change and terrestrial net primary production , 1993, Nature.

[81]  A. McGuire,et al.  Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America , 1992 .

[82]  G. Collatz,et al.  Coupled Photosynthesis-Stomatal Conductance Model for Leaves of C4 Plants , 1992 .

[83]  Cohmap Members Climatic changes of the last 18,000 years: observations and model simulations. , 1988, Science.

[84]  Wallace S. Broecker,et al.  The carbon cycle and atmospheric CO2 , 1986 .

[85]  N. Shackleton Carbon-13 in Uvigerina: Tropical Rainforest History and the Equatorial Pacific Carbonate Dissolution Cycles , 1977 .

[86]  Bert Bolin,et al.  A note on the concepts of age distribution and transit time in natural reservoirs , 1973 .

[87]  S S I T C H,et al.  Evaluation of Ecosystem Dynamics, Plant Geography and Terrestrial Carbon Cycling in the Lpj Dynamic Global Vegetation Model , 2022 .