Improving hyperspectral image classification using smoothing filter via sparse gradient minimization

In hyperspectral imagery, there exist homogeneous regions where neighboring pixels tend to belong to the same class with high probability. However, even though neighboring pixels are from the same material, their spectral characteristics may be different due to various factors, such as internal instrument noise or atmospheric scattering, which results in misclassification. In this work, the proposed framework employs a smoothing filter based on sparse gradient minimization, which is expected to eliminate the inherent variations within a small neighborhood. Experimental results for two hyperspectral image datasets demonstrate that the proposed algorithm significantly improve classification accuracy.

[1]  James E. Fowler,et al.  Locality-Preserving Dimensionality Reduction and Classification for Hyperspectral Image Analysis , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Qian Du,et al.  An efficient spatial-spectral classification method for hyperspectral imagery , 2014, Sensing Technologies + Applications.

[3]  Jon Atli Benediktsson,et al.  Spectral–Spatial Classification of Hyperspectral Imagery Based on Partitional Clustering Techniques , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Jon Atli Benediktsson,et al.  Spectral–Spatial Hyperspectral Image Classification With Edge-Preserving Filtering , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Liangpei Zhang,et al.  An SVM Ensemble Approach Combining Spectral, Structural, and Semantic Features for the Classification of High-Resolution Remotely Sensed Imagery , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Cewu Lu,et al.  Image smoothing via L0 gradient minimization , 2011, ACM Trans. Graph..

[7]  Gustavo Camps-Valls,et al.  Composite kernels for hyperspectral image classification , 2006, IEEE Geoscience and Remote Sensing Letters.

[8]  Jun Zhou,et al.  Hyperspectral Image Classification Based on Structured Sparse Logistic Regression and Three-Dimensional Wavelet Texture Features , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Gabriele Moser,et al.  Combining Support Vector Machines and Markov Random Fields in an Integrated Framework for Contextual Image Classification , 2013, IEEE Transactions on Geoscience and Remote Sensing.