Structural insights into the role of rRNA modifications in protein synthesis and ribosome assembly

[1]  T. Steitz,et al.  A proton wire to couple aminoacyl-tRNA accommodation and peptide bond formation on the ribosome , 2014, Nature Structural &Molecular Biology.

[2]  P. Sergiev,et al.  Modified nucleotides m2G966/m5C967 of Escherichia coli 16S rRNA are required for attenuation of tryptophan operon , 2013, Scientific Reports.

[3]  S. Vishveshwara,et al.  Distinctive contributions of the ribosomal P-site elements m2G966, m5C967 and the C-terminal tail of the S9 protein in the fidelity of initiation of translation in Escherichia coli , 2013, Nucleic acids research.

[4]  M. Rodnina,et al.  Impact of methylations of m2G966/m5C967 in 16S rRNA on bacterial fitness and translation initiation , 2012, Nucleic acids research.

[5]  Thomas A Steitz,et al.  How Hibernation Factors RMF, HPF, and YfiA Turn Off Protein Synthesis , 2012, Science.

[6]  J. SantaLucia,et al.  Comparison of solution conformations and stabilities of modified helix 69 rRNA analogs from bacteria and human. , 2012, Biopolymers.

[7]  M. Rodnina,et al.  Impact of methylations of m 2 G 966 / m 5 C 967 in 16 S rRNA on bacterial fitness and translation initiation , 2012 .

[8]  P. Sergiev,et al.  Modifications of ribosomal RNA: From enzymes to function , 2011 .

[9]  F. Murphy,et al.  Modification of 16S ribosomal RNA by the KsgA methyltransferase restructures the 30S subunit to optimize ribosome function. , 2010, RNA.

[10]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[11]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[12]  Satoshi Kimura,et al.  Fine-tuning of the ribosomal decoding center by conserved methyl-modifications in the Escherichia coli 16S rRNA , 2009, Nucleic acids research.

[13]  J. Rousset,et al.  Nucleotide modifications in three functionally important regions of the Saccharomyces cerevisiae ribosome affect translation accuracy , 2009, Nucleic acids research.

[14]  J. SantaLucia,et al.  Pseudouridines in rRNA helix 69 play a role in loop stacking interactions. , 2008, Organic & biomolecular chemistry.

[15]  Maurille J. Fournier,et al.  The 3D rRNA modification maps database: with interactive tools for ribosome analysis , 2007, Nucleic Acids Res..

[16]  M. Fournier,et al.  rRNA modifications in an intersubunit bridge of the ribosome strongly affect both ribosome biogenesis and activity. , 2007, Molecular cell.

[17]  S. K. Mahto,et al.  Expanding the nucleotide repertoire of the ribosome with post-transcriptional modifications. , 2007, ACS chemical biology.

[18]  Yohei Doi,et al.  16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. , 2007, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[19]  J. Dinman,et al.  Optimization of Ribosome Structure and Function by rRNA Base Modification , 2007, PloS one.

[20]  J. Poehlsgaard,et al.  Modifications in Thermus thermophilus 23 S Ribosomal RNA Are Centered in Regions of RNA-RNA Contact* , 2006, Journal of Biological Chemistry.

[21]  Wayne A. Decatur,et al.  rRNA modifications and ribosome function. , 2002, Trends in biochemical sciences.

[22]  D. Jemiolo,et al.  Mutations in 16S rRNA in Escherichia coli at methyl-modified sites: G966, C967, and G1207. , 1991, Nucleic acids research.

[23]  J. Ofengand,et al.  Covalent crosslinking of tRNA1Val to 16S RNA at the ribosomal P site: identification of crosslinked residues. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[24]  J. Davies,et al.  Change in methylation of 16S ribosomal RNA associated with mutation to kasugamycin resistance in Escherichia coli. , 1971, Nature: New biology.