Fourier Reconstruction of Nonuniformly Sampled, Aliased Seismic Data

There are numerous methods for interpolating uniformly sampled, aliased seismic data, but few can handle the combination of nonuniform sampling and aliasing. We combine the principles of Fourier reconstruction of nonaliased, nonuniformly sampled data with the ideas of frequency-wavenumber (f-k) interpolation of aliased, uniformly sampled data in a new two-step algorithm. In the first step, we estimate the Fourier coefficients at the lower nonaliased temporal frequencies from the nonuniformly sampled data. The coefficients are then used in the second step as an a priori model to distinguish between aliased and nonaliased energy at the higher, aliased temporal frequencies. By using a nonquadratic model penalty in the inversion, both the artifacts in the Fourier domain from nonuniform sampling and the aliased energy are suppressed. The underlying assumption is that events are planar; therefore, the algorithm is applied to seismic data in overlapping spatiotemporal windows.

[1]  Jon F. Claerbout,et al.  Interpolation with smoothly nonstationary prediction-error filters , 1999 .

[2]  Yu Zhang,et al.  Antileakage Fourier transform for seismic data regularization , 2005 .

[3]  A. Duijndam,et al.  Nonuniform fast Fourier transform , 1999 .

[4]  Philippe Herrmann,et al.  De-aliased, High-Resolution Radon Transforms , 2000 .

[5]  Bin Liu,et al.  Multi-dimensional reconstruction of seismic data , 2004 .

[6]  A. Duijndam,et al.  Optimizing Reconstruction For Sparse Spatial Sampling , 2000 .

[7]  C. O. H. Hindriks,et al.  Reconstruction of band‐limited signals, irregularly sampled along one spatial direction , 1999 .

[8]  Mauricio D. Sacchi,et al.  Minimum weighted norm interpolation of seismic records , 2004 .

[9]  Zhengyou Zhang,et al.  Parameter estimation techniques: a tutorial with application to conic fitting , 1997, Image Vis. Comput..

[10]  Mauricio D. Sacchi,et al.  Estimation of the discrete Fourier transform, a linear inversion approach , 1996 .

[11]  S. Spitz Seismic trace interpolation in the F-X domain , 1991 .

[12]  Robert Soubaras,et al.  Spatial Interpolation of Aliased Seismic Data , 1997 .

[13]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[14]  Mauricio D. Sacchi,et al.  Minimum Weighted Norm Interpolation of Seismic Data With Adaptive Weights , 2001 .

[15]  Necati Gulunay,et al.  Seismic trace interpolation in the Fourier transform domain , 2003 .

[16]  J. Claerbout,et al.  Robust Modeling With Erratic Data , 1973 .

[17]  T. Strohmer,et al.  Efficient numerical methods in non-uniform sampling theory , 1995 .

[18]  D. J. Verschuur,et al.  3D Surface-Related Multiple Prediction, an inversion approach , 2000 .

[19]  A. J. W. Duijndam,et al.  Reconstruction of 3-D seismic signals irregularly sampled along two spatial coordinates , 2000 .

[20]  V. Bardan,et al.  Trace interpolation in seismic data processing , 1987 .

[21]  Sergey Fomel,et al.  Applications of plane-wave destruction filters , 2002 .

[22]  Mauricio D. Sacchi,et al.  High‐resolution velocity gathers and offset space reconstruction , 1995 .

[23]  J. Claerbout,et al.  Interpolation beyond aliasing by (t,x)-domain PEFs , 1991 .

[24]  R. Abma,et al.  Comparisons of Interpolation Methods In the Presence of Aliased Events , 2003 .

[25]  R. de Beer,et al.  MRI Measurement time reduction by undersampling and Bayesian reconstruction using a 2D Lorentzian prior , 1998 .

[26]  J. Pipe,et al.  Sampling density compensation in MRI: Rationale and an iterative numerical solution , 1999, Magnetic resonance in medicine.

[27]  P. Zwartjes,et al.  Regularising 3D data using Fourier reconstruction and sparse inversion , 2001 .

[28]  Mauricio D. Sacchi,et al.  Latest views of the sparse Radon transform , 2003 .

[29]  J. Högbom,et al.  APERTURE SYNTHESIS WITH A NON-REGULAR DISTRIBUTION OF INTERFEROMETER BASELINES. Commentary , 1974 .

[30]  Jon F. Claerbout,et al.  Velocity-stack and slant-stack stochastic inversion , 1985 .