Large-scale quantum photonic circuits in silicon

Abstract Quantum information science offers inherently more powerful methods for communication, computation, and precision measurement that take advantage of quantum superposition and entanglement. In recent years, theoretical and experimental advances in quantum computing and simulation with photons have spurred great interest in developing large photonic entangled states that challenge today’s classical computers. As experiments have increased in complexity, there has been an increasing need to transition bulk optics experiments to integrated photonics platforms to control more spatial modes with higher fidelity and phase stability. The silicon-on-insulator (SOI) nanophotonics platform offers new possibilities for quantum optics, including the integration of bright, nonclassical light sources, based on the large third-order nonlinearity (χ(3)) of silicon, alongside quantum state manipulation circuits with thousands of optical elements, all on a single phase-stable chip. How large do these photonic systems need to be? Recent theoretical work on Boson Sampling suggests that even the problem of sampling from e30 identical photons, having passed through an interferometer of hundreds of modes, becomes challenging for classical computers. While experiments of this size are still challenging, the SOI platform has the required component density to enable low-loss and programmable interferometers for manipulating hundreds of spatial modes. Here, we discuss the SOI nanophotonics platform for quantum photonic circuits with hundreds-to-thousands of optical elements and the associated challenges. We compare SOI to competing technologies in terms of requirements for quantum optical systems. We review recent results on large-scale quantum state evolution circuits and strategies for realizing high-fidelity heralded gates with imperfect, practical systems. Next, we review recent results on silicon photonics-based photon-pair sources and device architectures, and we discuss a path towards large-scale source integration. Finally, we review monolithic integration strategies for single-photon detectors and their essential role in on-chip feed forward operations.

[1]  W. D. L. Rue The Melbourne Telescope , 1872, Nature.

[2]  C. LLOVD MORGAN,et al.  Mind in Evolution , 1903, Nature.

[3]  THE USE OF ACID SOIL FOR RAISING SEEDLINGS OF THE MAYFLOWER, EPIGAEA REPENS. , 1911, Science.

[4]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .

[5]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[6]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[7]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[8]  D. Branning,et al.  Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source , 2002, quant-ph/0205140.

[9]  J. D. Franson,et al.  Single photons on pseudodemand from stored parametric down-conversion , 2002, quant-ph/0205103.

[10]  M. Lipson,et al.  All-optical control of light on a silicon chip , 2004, Nature.

[11]  M. Nielsen Optical quantum computation using cluster States. , 2004, Physical review letters.

[12]  A. Lui,et al.  Propagation losses of silicon nitride waveguides in the near-infrared range , 2005 .

[13]  T. Rudolph,et al.  Resource-efficient linear optical quantum computation. , 2004, Physical review letters.

[14]  Vikas Anant,et al.  Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating. , 2006, Optics express.

[15]  B. Jalali,et al.  Silicon Photonics , 2006, Journal of Lightwave Technology.

[16]  O. Hansen,et al.  Strained silicon as a new electro-optic material , 2006, Nature.

[17]  Jeffrey H. Shapiro,et al.  Single-photon Kerr nonlinearities do not help quantum computation , 2006 .

[18]  M. Lipson,et al.  Generation of correlated photons in nanoscale silicon waveguides. , 2006, Optics express.

[19]  J Eisert,et al.  Percolation, renormalization, and quantum computing with nondeterministic gates. , 2007, Physical review letters.

[20]  Jeffrey H Shapiro,et al.  On-demand single-photon generation using a modular array of parametric downconverters with electro-optic polarization controls. , 2007, Optics letters.

[21]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[22]  Dirk Englund,et al.  Controlling Cavity Reflectivity with a Single Quantum Dot , 2007 .

[23]  Oskar Painter,et al.  Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system , 2007, Nature.

[24]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.

[25]  Dirk Englund,et al.  Controlled Phase Shifts with a Single Quantum Dot , 2008, Science.

[26]  Hiroshi Fukuda,et al.  Entanglement generation using silicon wire waveguide , 2008 .

[27]  Michal Lipson,et al.  Low loss etchless silicon photonic waveguides , 2009 .

[28]  R. Hadfield Single-photon detectors for optical quantum information applications , 2009 .

[29]  M. Lipson,et al.  Low loss etchless silicon photonic waveguides , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[30]  S. Massar,et al.  Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators. , 2009, Optics express.

[31]  On photonic controlled phase gates , 2009, 0909.2057.

[32]  B. Lanyon,et al.  Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.

[33]  Michael R Watts,et al.  Adiabatic microring resonators. , 2010, Optics letters.

[34]  C Monat,et al.  Four-wave mixing in slow light engineered silicon photonic crystal waveguides. , 2010, Optics express.

[35]  A. Politi,et al.  Integrated quantum photonics , 2009, 2010 IEEE Photinic Society's 23rd Annual Meeting.

[36]  A. Politi,et al.  Quantum Walks of Correlated Photons , 2010, Science.

[37]  J. Sipe,et al.  Spontaneous four-wave mixing in microring resonators. , 2010, Optics letters.

[38]  J. Leuthold,et al.  Nonlinear silicon photonics , 2010 .

[39]  Michael Hochberg,et al.  Towards fabless silicon photonics , 2010 .

[40]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[41]  A. Politi,et al.  Integrated quantum photonics , 2010 .

[42]  Dirk Englund,et al.  Efficient generation of single and entangled photons on a silicon photonic integrated chip , 2011 .

[43]  Johannes Kofler,et al.  Experimental generation of single photons via active multiplexing , 2010, 1007.4798.

[44]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[45]  Jeremy Lloyd O'Brien,et al.  Integrated waveguide circuits for optical quantum computing , 2011, IET Circuits Devices Syst..

[46]  Yeshaiahu Fainman,et al.  Etch-free low loss silicon waveguides using hydrogen silsesquioxane oxidation masks. , 2011, Optics express.

[47]  T. Krauss,et al.  Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide. , 2011, Optics letters.

[48]  Evelyn L. Hu,et al.  Ultrafast all-optical switching by single photons , 2011, Nature Photonics.

[49]  Alán Aspuru-Guzik,et al.  Photonic quantum simulators , 2012, Nature Physics.

[50]  Frederik Fuest,et al.  Ultrahigh laser pulse energy and power generation at 10 kHz. , 2012, Optics letters.

[51]  A. Sergienko,et al.  High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits , 2011, Nature communications.

[52]  From classical four-wave mixing to parametric fluorescence in silicon microring resonators. , 2012, Optics letters.

[53]  E. Waks,et al.  Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity. , 2012, Physical review letters.

[54]  F. Xia,et al.  Heralded single photons from a silicon nanophotonic chip , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[55]  The Role of a Fabless Silicon Photonics Industry in the Era of Quantum Engineering , 2012 .

[56]  Guo-Qiang Lo,et al.  A 25 Gb/s Silicon Photonics Platform , 2012 .

[57]  M. Sorel,et al.  Ultra-low power generation of twin photons in a compact silicon ring resonator. , 2012, Optics express.

[58]  Guo-Qiang Lo,et al.  Ultralow drive voltage silicon traveling-wave modulator. , 2012, Optics express.

[59]  M. Galli,et al.  Stimulated and spontaneous four-wave mixing in silicon-on-insulator coupled photonic wire nano-cavities , 2013, 1307.5206.

[60]  Michael R. Watts,et al.  Large-scale nanophotonic phased array , 2013, Nature.

[61]  David A. B. Miller,et al.  Self-configuring universal linear optical component [Invited] , 2013, 1303.4602.

[62]  A. Crespi,et al.  Integrated multimode interferometers with arbitrary designs for photonic boson sampling , 2013, Nature Photonics.

[63]  Andrew G. White,et al.  Photonic Boson Sampling in a Tunable Circuit , 2012, Science.

[64]  Sergey V. Polyakov,et al.  Single-photon generation and detection , 2013 .

[65]  B. J. Metcalf,et al.  Boson Sampling on a Photonic Chip , 2012, Science.

[66]  T.D. Vo,et al.  Integrated spatial multiplexing of heralded single-photon sources , 2013, Nature communications.

[67]  J. Rarity,et al.  Photonic quantum technologies , 2013 .

[68]  Philip Walther,et al.  Experimental boson sampling , 2012, Nature Photonics.

[69]  C. M. Natarajan,et al.  Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement. , 2012, Optics express.

[70]  F. Marsili,et al.  Detecting single infrared photons with 93% system efficiency , 2012, 1209.5774.

[71]  Andrea Fiore,et al.  Integrated autocorrelator based on superconducting nanowires. , 2013, Optics express.

[72]  Jie Sun,et al.  Adiabatic thermo-optic Mach-Zehnder switch. , 2013, Optics letters.

[73]  V. Zwiller,et al.  Quantum interference in plasmonic circuits. , 2013, Nature nanotechnology.

[74]  Wesley D Sacher,et al.  Dimensional variation tolerant silicon-on-insulator directional couplers. , 2014, Optics express.

[75]  Masaya Notomi,et al.  Entangled photons from on-chip slow light , 2014, Scientific Reports.

[76]  N. Harris,et al.  Efficient, compact and low loss thermo-optic phase shifter in silicon. , 2014, Optics express.

[77]  N. Harris,et al.  Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems , 2014, 1409.8215.

[78]  Richard V. Penty,et al.  An introduction to InP-based generic integration technology , 2014 .

[79]  Peter Karkus,et al.  On-chip generation and demultiplexing of quantum correlated photons using a silicon-silica monolithic photonic integration platform. , 2014, Optics express.

[80]  Michael J. Strain,et al.  Micrometer-scale integrated silicon source of time-energy entangled photons , 2014, 1409.4881.

[81]  H. Kimble,et al.  Atom–light interactions in photonic crystals , 2013, Nature Communications.

[82]  Tom Baehr Jones,et al.  50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm , 2013, OFC 2014.

[83]  J. Shapiro,et al.  Phase-noise limitations on single-photon cross-phase modulation with differing group velocities , 2014, 1410.0663.

[84]  J. D. Thompson,et al.  Nanophotonic quantum phase switch with a single atom , 2014, Nature.

[85]  C. M. Natarajan,et al.  On-chip quantum interference between silicon photon-pair sources , 2013, Nature Photonics.

[86]  Jun Rong Ong,et al.  Silicon microring-based wavelength converter with integrated pump and signal suppression. , 2014, Optics letters.

[87]  Jonathan P. Dowling,et al.  An introduction to boson-sampling , 2014, 1406.6767.

[88]  Marco Barbieri,et al.  Quantum teleportation on a photonic chip , 2014, Nature Photonics.

[89]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[90]  Ying Li,et al.  Resource costs for fault-tolerant linear optical quantum computing , 2015, 1504.02457.

[91]  Peter van Loock,et al.  Near-deterministic creation of universal cluster states with probabilistic Bell measurements and three-qubit resource states , 2014, 1410.3753.

[92]  Michael G. Tanner,et al.  Quantum Photonic Interconnect , 2015, 1508.03214.

[93]  J. O'Brien,et al.  Qubit entanglement between ring-resonator photon-pair sources on a silicon chip , 2015, Nature Communications.

[94]  Gregory R. Steinbrecher,et al.  High-fidelity quantum state evolution in imperfect photonic integrated circuits , 2015 .

[95]  G. Guerreschi,et al.  Boson sampling for molecular vibronic spectra , 2014, Nature Photonics.

[96]  Thomas F. Krauss,et al.  Photonic Crystal Waveguide Sources of Photons for Quantum Communication Applications , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[97]  Enrique Martin-Lopez,et al.  Active Temporal Multiplexing of Photons , 2015, 1503.01215.

[98]  C. Roeloffzen,et al.  Compact and reconfigurable silicon nitride time-bin entanglement circuit , 2015, 1506.02758.

[99]  J. Borregaard,et al.  Heralded Quantum Gates with Integrated Error Detection in Optical Cavities , 2015, 1501.00956.

[100]  K. Berggren,et al.  Fabrication Process Yielding Saturated Nanowire Single-Photon Detectors With 24-ps Jitter , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[101]  Marc Savanier,et al.  Optimizing photon-pair generation electronically using a p-i-n diode incorporated in a silicon microring resonator , 2015 .

[102]  Robert J. A. Francis-Jones,et al.  Temporal Loop Multiplexing: A resource efficient scheme for multiplexed photon-pair sources , 2015, 1503.06178.

[103]  Mercedes Gimeno-Segovia,et al.  From Three-Photon Greenberger-Horne-Zeilinger States to Ballistic Universal Quantum Computation. , 2014, Physical review letters.

[104]  A. Leinse,et al.  TriPleX: a versatile dielectric photonic platform , 2015 .

[105]  Barry C. Sanders,et al.  Accurate and precise characterization of linear optical interferometers , 2015, 1508.00283.

[106]  David A. B. Miller,et al.  Perfect optics with imperfect components , 2015 .

[107]  Shellee D. Dyer,et al.  Quantum-correlated photon pairs generated in a commercial 45nm complementary metal-oxide semiconductor microelectronics chip , 2015, 1507.01121.

[108]  Jeffrey A. Steidle,et al.  On-Chip Quantum Interference from a Single Silicon Ring-Resonator Source , 2015 .

[109]  Huiying Hu,et al.  Low-loss waveguides in a single-crystal lithium niobate thin film. , 2015, Optics letters.

[110]  Fumihiro Kaneda,et al.  Time-multiplexed heralded single-photon source , 2015, 1507.06052.

[111]  Y. Bromberg,et al.  Critical states embedded in the continuum , 2014, 2015 Conference on Lasers and Electro-Optics (CLEO).

[112]  Scott Aaronson,et al.  BosonSampling with Lost Photons , 2015, ArXiv.

[113]  Dirk Englund,et al.  On-chip detection of non-classical light by scalable integration of single-photon detectors , 2014, Nature Communications.

[114]  A Quantum Optics Argument for the #P-hardness of a Class of Multidimensional Integrals , 2016, 1607.04960.

[115]  Philip H. W. Leong,et al.  Active temporal multiplexing of indistinguishable heralded single photons , 2015, Nature Communications.

[116]  Saikat Guha,et al.  Rate-distance tradeoff and resource costs for all-optical quantum repeaters , 2016, Physical Review A.

[117]  Gregory R. Steinbrecher,et al.  Quantum transport simulations in a programmable nanophotonic processor , 2015, Nature Photonics.

[118]  Peter Ingo Borel,et al.  Slow Light in Photonic Crystal Waveguides , 2018, Slow Light.