Reduced-order shape optimization using offset surfaces

Given the 2-manifold surface of a 3d object, we propose a novel method for the computation of an offset surface with varying thickness such that the solid volume between the surface and its offset satisfies a set of prescribed constraints and at the same time minimizes a given objective functional. Since the constraints as well as the objective functional can easily be adjusted to specific application requirements, our method provides a flexible and powerful tool for shape optimization. We use manifold harmonics to derive a reduced-order formulation of the optimization problem, which guarantees a smooth offset surface and speeds up the computation independently from the input mesh resolution without affecting the quality of the result. The constrained optimization problem can be solved in a numerically robust manner with commodity solvers. Furthermore, the method allows simultaneously optimizing an inner and an outer offset in order to increase the degrees of freedom. We demonstrate our method in a number of examples where we control the physical mass properties of rigid objects for the purpose of 3d printing.

[1]  Hans-Peter Seidel,et al.  An efficient construction of reduced deformable objects , 2013, ACM Trans. Graph..

[2]  A. M. Messner,et al.  Algorithm 550: Solid Polyhedron Measures [Z] , 1980, TOMS.

[3]  Bruno Lévy,et al.  Spectral Geometry Processing with Manifold Harmonics , 2008, Comput. Graph. Forum.

[4]  Theodore Kim,et al.  Skipping steps in deformable simulation with online model reduction , 2009, SIGGRAPH 2009.

[5]  Wojciech Matusik,et al.  Design and fabrication of materials with desired deformation behavior , 2010, SIGGRAPH 2010.

[6]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[7]  Bruno Lévy,et al.  Spectral Mesh Processing , 2009, SIGGRAPH '10.

[8]  Radomír Mech,et al.  Stress relief , 2012, ACM Trans. Graph..

[9]  Bruno Lévy,et al.  Laplace-Beltrami Eigenfunctions Towards an Algorithm That "Understands" Geometry , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[10]  WimmerMichael,et al.  Reduced-order shape optimization using offset surfaces , 2015 .

[11]  R. Haftka,et al.  Elements of Structural Optimization , 1984 .

[12]  Wojciech Matusik,et al.  Computational design of mechanical characters , 2013, ACM Trans. Graph..

[13]  Leif Kobbelt,et al.  An intuitive framework for real-time freeform modeling , 2004, ACM Trans. Graph..

[14]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[15]  Olga Sorkine-Hornung,et al.  Bounded biharmonic weights for real-time deformation , 2011, Commun. ACM.

[16]  Takeo Igarashi,et al.  Sensitive couture for interactive garment modeling and editing , 2011, SIGGRAPH 2011.

[17]  Sylvain Lefebvre,et al.  Make it stand , 2013, ACM Trans. Graph..

[18]  M. Pauly,et al.  Embedded deformation for shape manipulation , 2007, SIGGRAPH 2007.

[19]  Baining Guo,et al.  Motion-guided mechanical toy modeling , 2012, ACM Trans. Graph..

[20]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[21]  J. W. Humberston Classical mechanics , 1980, Nature.

[22]  Theodore Kim,et al.  Skipping steps in deformable simulation with online model reduction , 2009, ACM Trans. Graph..

[23]  Ligang Liu,et al.  Cost-effective printing of 3D objects with skin-frame structures , 2013, ACM Trans. Graph..

[24]  C. Poole,et al.  Classical Mechanics, 3rd ed. , 2002 .

[25]  Andrea Tagliasacchi,et al.  Mean Curvature Skeletons , 2012, Comput. Graph. Forum.

[26]  Eitan Grinspun,et al.  Computational design of linkage-based characters , 2014, ACM Trans. Graph..

[27]  Markus H. Gross,et al.  Computational Design of Rubber Balloons , 2012, Comput. Graph. Forum.

[28]  M. Otaduy,et al.  Design and fabrication of materials with desired deformation behavior , 2010, ACM Trans. Graph..

[29]  Ramsay Dyer,et al.  Spectral Mesh Processing , 2010, Comput. Graph. Forum.

[30]  Takeo Igarashi,et al.  Guided exploration of physically valid shapes for furniture design , 2012, ACM Trans. Graph..

[31]  Doug L. James,et al.  Fabricating articulated characters from skinned meshes , 2012, ACM Trans. Graph..

[32]  Takeo Igarashi,et al.  Sensitive couture for interactive garment modeling and editing , 2011, ACM Trans. Graph..

[33]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[34]  Denis Zorin,et al.  Worst-case structural analysis , 2013, ACM Trans. Graph..

[35]  H. Timmer,et al.  Computation of global geometric properties of solid objects , 1980 .

[36]  Olga Sorkine-Hornung,et al.  Spin-it , 2014, ACM Trans. Graph..

[37]  Daniel Cohen-Or,et al.  Build-to-last , 2014, ACM Trans. Graph..

[38]  Wojciech Matusik,et al.  Chopper: partitioning models into 3D-printable parts , 2012, ACM Trans. Graph..

[39]  Alex Pentland,et al.  Good vibrations: modal dynamics for graphics and animation , 1989, SIGGRAPH.

[40]  Jakob Andreas Bærentzen,et al.  Automatic balancing of 3D models , 2015, Comput. Aided Des..