Variation in the endogenous intact waxes of odontocetes: There is more than one way to build an acoustic receiver

[1]  H. Koopman,et al.  Fatty acid composition and N2 solubility in triacylglycerol-rich adipose tissue: the likely importance of intact molecular structure , 2020, Journal of Experimental Biology.

[2]  H. Koopman,et al.  Microvascular characteristics of the acoustic fats: Novel data suggesting taxonomic differences between deep and shallow‐diving odontocetes , 2018, Journal of morphology.

[3]  H. Koopman Function and evolution of specialized endogenous lipids in toothed whales , 2018, Journal of Experimental Biology.

[4]  R. W. Baird,et al.  Movement and foraging behavior of short-finned pilot whales in the Mid-Atlantic Bight: importance of bathymetric features and implications for management , 2017 .

[5]  S. Rommel,et al.  The extracranial venous system in the heads of beaked whales, with implications on diving physiology and pathogenesis , 2016, Journal of morphology.

[6]  D. A. Pabst,et al.  Nitrogen solubility in odontocete blubber and mandibular fats in relation to lipid composition , 2015, The Journal of Experimental Biology.

[7]  D. Ketten,et al.  Characterization of lipids in adipose depots associated with minke and fin whale ears: Comparison with “acoustic fats” of toothed whales , 2014 .

[8]  D. A. Pabst,et al.  Foraging ecology and niche overlap in pygmy (Kogia breviceps) and dwarf (Kogia sima) sperm whales from waters of the U.S. mid‐Atlantic coast , 2014 .

[9]  Russel D. Andrews,et al.  First Long-Term Behavioral Records from Cuvier’s Beaked Whales (Ziphius cavirostris) Reveal Record-Breaking Dives , 2014, PloS one.

[10]  Danielle R. Greenhow,et al.  Hearing threshold measurements of five stranded short-finned pilot whales (Globicephala macrorhynchus). , 2014, The Journal of the Acoustical Society of America.

[11]  M. Springer,et al.  A phylogenetic blueprint for a modern whale. , 2013, Molecular phylogenetics and evolution.

[12]  M. McKenna,et al.  Morphology of the odontocete melon and its implications for acoustic function , 2012 .

[13]  P. E. Nachtigall,et al.  Audiogram of a stranded Blainville's beaked whale (Mesoplodon densirostris) measured using auditory evoked potentials , 2011, Journal of Experimental Biology.

[14]  J. Geisler,et al.  A supermatrix analysis of genomic, morphological, and paleontological data from crown Cetacea , 2011, BMC Evolutionary Biology.

[15]  Dorian S Houser,et al.  Auditory evoked potentials in a stranded Gervais' beaked whale (Mesoplodon europaeus). , 2009, The Journal of the Acoustical Society of America.

[16]  S. Budge,et al.  Distribution and development of the highly specialized lipids in the sound reception systems of dolphins , 2009, Journal of Comparative Physiology B.

[17]  D. A. Pabst,et al.  Morphology of the melon and its tendinous connections to the facial muscles in bottlenose dolphins (Tursiops truncatus) , 2008, Journal of morphology.

[18]  Petr Krysl,et al.  Acoustic pathways revealed: simulated sound transmission and reception in Cuvier's beaked whale (Ziphius cavirostris) , 2008, Bioinspiration & biomimetics.

[19]  T. Karupaiah,et al.  Effects of stereospecific positioning of fatty acids in triacylglycerol structures in native and randomized fats: a review of their nutritional implications , 2007, Nutrition & metabolism.

[20]  R. Connor,et al.  Predation by killer whales (Orcinus orca) and the evolution of whistle loss and narrow‐band high frequency clicks in odontocetes , 2007, Journal of evolutionary biology.

[21]  H. Koopman Phylogenetic, ecological, and ontogenetic factors influencing the biochemical structure of the blubber of odontocetes , 2007 .

[22]  S. Iverson,et al.  STUDYING TROPHIC ECOLOGY IN MARINE ECOSYSTEMS USING FATTY ACIDS: A PRIMER ON ANALYSIS AND INTERPRETATION , 2006 .

[23]  Mark P. Johnson,et al.  Deep-diving foraging behaviour of sperm whales (Physeter macrocephalus). , 2006, The Journal of animal ecology.

[24]  K. Michaelsen,et al.  The Stereospecific Triacylglycerol Structures and Fatty Acid Profiles of Human Milk and Infant Formulas , 2006, Journal of pediatric gastroenterology and nutrition.

[25]  A. Henriksen,et al.  Fatty acid synthesis , 2006, The FEBS journal.

[26]  P. Madsen,et al.  PORPOISE CLICKS FROM A SPERM WHALE NOSE—CONVERGENT EVOLUTION OF 130 KHZ PULSES IN TOOTHED WHALE SONARS? , 2005 .

[27]  C. Hoh,et al.  Structural and functional imaging of bottlenose dolphin (Tursiops truncatus) cranial anatomy , 2004, Journal of Experimental Biology.

[28]  S. Iverson,et al.  High concentrations of isovaleric acid in the fats of odontocetes: variation and patterns of accumulation in blubber vs. stability in the melon , 2003, Journal of Comparative Physiology B.

[29]  M. Clarke,et al.  Feeding ecology of Cuvier's beaked whale (Ziphius cavirostris): a review with new information on the diet of this species , 2001, Journal of the Marine Biological Association of the United Kingdom.

[30]  M. Clarke,et al.  Sound velocity in the head of the dwarf sperm whale, Kogia sima, with anatomical and functional discussion , 2000, Journal of the Marine Biological Association of the United Kingdom.

[31]  J. Blomberg,et al.  Ultrasonic studies on the head oil of the North Atlantic pilot whale (Globicephala melaena melaena). , 1976, The Journal of the Acoustical Society of America.

[32]  R. Morris Further studies into the lipid structure of the spermaceti organ of the sperm whale (Physeter catodon) , 1975 .

[33]  U. Varanasi,et al.  Molecular basis for formation of lipid sound lens in echolocating cetaceans , 1975, Nature.

[34]  D. K. Caldwell,et al.  Comparative lipid patterns in acoustical and nonacoustical fatty tissues of dolphins, porpoises and toothed whales. , 1975, Comparative biochemistry and physiology. B, Comparative biochemistry.

[35]  A. J. Greenberg,et al.  Comparative lipid patterns in the melon fats of dolphins, porpoises and toothed whales , 1974 .

[36]  E. Mitchell,et al.  Heterogeneity of lipid composition within the cephalic melon tissue of the pilot whale (Globicephala melaena). , 1973, Biochimica et biophysica acta.

[37]  R. Morris The lipid structure of the spermaceti organ of the sperm whale (Physeter catodon) , 1973 .

[38]  U. Varanasi,et al.  Unique lipids of the porpoise (Tursiops gilli): differences in triacyl glycerols and wax esters of acoustic (mandibular canal and melon) and blubber tissues. , 1971, Biochimica et biophysica acta.

[39]  D. Ketten STRUCTURE AND FUNCTION IN WHALE EARS , 1997 .

[40]  Darlene R. Ketten,et al.  The Marine Mammal Ear: Specializations for Aquatic Audition and Echolocation , 1992 .

[41]  H. Morii,et al.  Biosynthesis of branched-chain fatty acids from branched-chain amino acids in subcutaneous tissue of the marine little toothed whale, Stenella caeruleo-alba. , 1982, Comparative biochemistry and physiology. B, Comparative biochemistry.

[42]  A. J. Greenberg,et al.  Compositional topography of melon lipids in the amazon river dolphin, inia geoffrensis: Implications for echolocation , 1979 .