Hyperspectral anomaly detection using ensemble and robust collaborative representation

[1]  Ting-Zhu Huang,et al.  Bilateral filter based total variation regularization for sparse hyperspectral image unmixing , 2019, Inf. Sci..

[2]  Jane You,et al.  Hyperspectral image unsupervised classification by robust manifold matrix factorization , 2019, Inf. Sci..

[3]  Qian Du,et al.  GETNET: A General End-to-End 2-D CNN Framework for Hyperspectral Image Change Detection , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Rui Guo,et al.  Hyperspectral Anomaly Detection Through Spectral Unmixing and Dictionary-Based Low-Rank Decomposition , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Gongjian Wen,et al.  Hyperspectral Anomaly Detection via Background Estimation and Adaptive Weighted Sparse Representation , 2018, Remote. Sens..

[6]  Cheng Shi,et al.  3D multi-resolution wavelet convolutional neural networks for hyperspectral image classification , 2017, Inf. Sci..

[7]  Yuan Yuan,et al.  Hyperspectral Anomaly Detection by Graph Pixel Selection , 2016, IEEE Transactions on Cybernetics.

[8]  Miguel Angel Veganzones,et al.  Hyperspectral Anomaly Detectors Using Robust Estimators , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[9]  Yang Xu,et al.  A novel hyperspectral image anomaly detection method based on low rank representation , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[10]  Li Ma,et al.  Hyperspectral Anomaly Detection by the Use of Background Joint Sparse Representation , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[11]  Yiwen Sun,et al.  Three-dimensional Gabor feature extraction for hyperspectral imagery classification using a memetic framework , 2015, Inf. Sci..

[12]  Qian Du,et al.  Collaborative Representation for Hyperspectral Anomaly Detection , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Qi Wang,et al.  Fast Hyperspectral Anomaly Detection via High-Order 2-D Crossing Filter , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Jocelyn Chanussot,et al.  Binary partition trees-based robust adaptive hyperspectral RX anomaly detection , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[15]  Bo Du,et al.  A Robust Nonlinear Hyperspectral Anomaly Detection Approach , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[16]  Antonio J. Plaza,et al.  Spectral–Spatial Classification of Hyperspectral Data Using Local and Global Probabilities for Mixed Pixel Characterization , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Bo Du,et al.  Regularization Framework for Target Detection in Hyperspectral Imagery , 2014, IEEE Geoscience and Remote Sensing Letters.

[18]  Xindong Wu,et al.  Manifold elastic net: a unified framework for sparse dimension reduction , 2010, Data Mining and Knowledge Discovery.

[19]  Xiaodong Li,et al.  Stable Principal Component Pursuit , 2010, 2010 IEEE International Symposium on Information Theory.

[20]  Sen Jia,et al.  Constrained Nonnegative Matrix Factorization for Hyperspectral Unmixing , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[21]  John P. Kerekes,et al.  Receiver Operating Characteristic Curve Confidence Intervals and Regions , 2008, IEEE Geoscience and Remote Sensing Letters.

[22]  Joydeep Ghosh,et al.  Investigation of the random forest framework for classification of hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Mark J. Carlotto,et al.  A cluster-based approach for detecting man-made objects and changes in imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[24]  A. Hadi,et al.  BACON: blocked adaptive computationally efficient outlier nominators , 2000 .

[25]  I. Reed,et al.  A Detection Algorithm for Optical Targets in Clutter , 1987, IEEE Transactions on Aerospace and Electronic Systems.