Optimization for Multitarget, Multispacecraft Impulsive Rendezvous Considering J2 Perturbation

Optimization for active debris removal using multiple spacecraft is investigated. The main challenge is to determine the rendezvous sequences of the targets considering the J2 perturbation, which i...

[1]  Dongping Jin,et al.  Libration control of bare electrodynamic tether for three-dimensional deployment , 2018 .

[2]  J. Angel Borja,et al.  Deorbit Process Using Solar Radiation Force , 2006 .

[3]  S. Flegel,et al.  Active debris removal of multiple priority targets , 2013 .

[4]  Pradipto Ghosh,et al.  Particle Swarm Optimization of Multiple-Burn Rendezvous Trajectories , 2012 .

[5]  Joseph Hughes,et al.  Survey of the electrostatic tractor research for reorbiting passive GEO space objects , 2018, Astrodynamics.

[6]  Hexi Baoyin,et al.  J2-Perturbed Multitarget Rendezvous Optimization with Low Thrust , 2017 .

[7]  Dario Izzo,et al.  Designing Complex Interplanetary Trajectories for the Global Trajectory Optimization Competitions , 2015, 1511.00821.

[8]  J.-C. Liou,et al.  Controlling the growth of future LEO debris populations with active debris removal , 2010 .

[9]  David J. Gondelach,et al.  Multiple Revolution Perturbed Lambert Problem Solvers , 2018, Journal of Guidance, Control, and Dynamics.

[10]  Theodore N. Edelbaum,et al.  Propulsion Requirements for Controllable Satellites , 1961 .

[11]  J.-C. Liou,et al.  A sensitivity study of the effectiveness of active debris removal in LEO , 2009 .

[12]  Max Cerf,et al.  Multiple Space Debris Collecting Mission—Debris Selection and Trajectory Optimization , 2011, J. Optim. Theory Appl..

[13]  Juan Manuel Romero Martin,et al.  Automatic trajectory planning for low-thrust active removal mission in low-earth orbit , 2017 .

[14]  Joris T. Olympio,et al.  Space debris selection and optimal guidance for removal in the SSO with low-thrust propulsion , 2014 .

[15]  Kathleen C. Howell,et al.  Application of multi-agent coordination methods to the design of space debris mitigation tours , 2016 .

[16]  Thomas Stützle,et al.  MAX-MIN Ant System , 2000, Future Gener. Comput. Syst..

[17]  Dario Izzo,et al.  Deep networks as approximators of optimal low-thrust and multi-impulse cost in multitarget missions , 2019, Acta Astronautica.

[18]  Guo-Jin Tang,et al.  Optimization of multiple-impulse, multiple-revolution, rendezvous-phasing maneuvers , 2007 .

[19]  Guo-Jin Tang,et al.  Hybrid planning for LEO long-duration multi-spacecraft rendezvous mission , 2012 .

[20]  Haiyang Li,et al.  Optimization of Multiple Debris Removal Missions Using an Evolving Elitist Club Algorithm , 2020, IEEE Transactions on Aerospace and Electronic Systems.

[21]  John L. Junkins,et al.  The gravity-perturbed Lambert problem: A KS variation of parameters approach , 1981 .

[22]  Eberhard Gill,et al.  Review and comparison of active space debris capturing and removal methods , 2016 .

[23]  Max Cerf Multiple Space Debris Collecting Mission: Optimal Mission Planning , 2015, J. Optim. Theory Appl..

[24]  Ahmad Bani Younes,et al.  New Solutions for the Perturbed Lambert Problem Using Regularization and Picard Iteration , 2015 .

[25]  Lorenzo Casalino,et al.  Optimization of active debris removal missions with multiple targets , 2017 .

[26]  Quan Pan,et al.  Multi-objective optimal preliminary planning of multi-debris active removal mission in LEO , 2017, Science China Information Sciences.

[27]  Jaemyung Ahn,et al.  Multitarget Rendezvous for Active Debris Removal Using Multiple Spacecraft , 2019, Journal of Spacecraft and Rockets.