On comonotone commuting and weak subadditivity properties of seminormed fuzzy integrals

Abstract In the paper, we characterize the class of all the binary operators ∘-commuting with the generalized Sugeno integral generated by a strict t -norm. For the Sugeno integral, this problem was solved by Ouyang and Mesiar. We also present the necessary and sufficient conditions for the weak subadditivity of the generalized Sugeno integral.

[1]  Michal Boczek,et al.  On Chebyshev type inequalities for generalized Sugeno integrals , 2014, Fuzzy Sets Syst..

[2]  F. García,et al.  Two families of fuzzy integrals , 1986 .

[3]  Radko Mesiar,et al.  On the Chebyshev type inequality for seminormed fuzzy integral , 2009, Appl. Math. Lett..

[4]  Michal Boczek,et al.  On S-homogeneity property of seminormed fuzzy integral: An answer to an open problem , 2016, Inf. Sci..

[5]  Radko Mesiar,et al.  Open problems from the 12th International Conference on Fuzzy Set Theory and Its Applications , 2015, Fuzzy Sets Syst..

[6]  Radko Mesiar,et al.  A Universal Integral as Common Frame for Choquet and Sugeno Integral , 2010, IEEE Transactions on Fuzzy Systems.

[7]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[8]  Jun Li,et al.  On the comonotonic-*-property for Sugeno integral , 2009, Appl. Math. Comput..

[9]  Ondrej Hutník,et al.  The smallest semicopula-based universal integrals I: Properties and characterizations , 2015, Fuzzy Sets Syst..

[10]  Radko Mesiar,et al.  Triangular Norms , 2000, Trends in Logic.

[11]  R. Mesiar,et al.  Open problems from the 12 th International Conference on Fuzzy Set Theory and Its Applications , 2014 .

[12]  M. Kaluszka,et al.  An answer to an open problem on seminormed fuzzy integral , 2015, 1503.01437.

[13]  N. Shilkret Maxitive measure and integration , 1971 .

[14]  Francesc Esteva,et al.  Review of Triangular norms by E. P. Klement, R. Mesiar and E. Pap. Kluwer Academic Publishers , 2003 .

[15]  G. Klir,et al.  Generalized Measure Theory , 2008 .

[16]  Radko Mesiar,et al.  Sugeno Integral and the Comonotone Commuting Property , 2009, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[17]  Fabio Spizzichino,et al.  Relations among univariate aging, bivariate aging and dependence for exchangeable lifetimes , 2005 .