Measurement-Induced Phase Transitions in the Dynamics of Entanglement

We define dynamical universality classes for many-body systems whose unitary evolution is punctuated by projective measurements. In cases where such measurements occur randomly at a finite rate $p$ for each degree of freedom, we show that the system has two dynamical phases: `entangling' and `disentangling'. The former occurs for $p$ smaller than a critical rate $p_c$, and is characterized by volume-law entanglement in the steady-state and `ballistic' entanglement growth after a quench. By contrast, for $p > p_c$ the system can sustain only area-law entanglement. At $p = p_c$ the steady state is scale-invariant and, in 1+1D, the entanglement grows logarithmically after a quench. To obtain a simple heuristic picture for the entangling-disentangling transition, we first construct a toy model that describes the zeroth Renyi entropy in discrete time. We solve this model exactly by mapping it to an optimization problem in classical percolation. The generic entangling-disentangling transition can be diagnosed using the von Neumann entropy and higher Renyi entropies, and it shares many qualitative features with the toy problem. We study the generic transition numerically in quantum spin chains, and show that the phenomenology of the two phases is similar to that of the toy model, but with distinct `quantum' critical exponents, which we calculate numerically in $1+1$D. We examine two different cases for the unitary dynamics: Floquet dynamics for a nonintegrable Ising model, and random circuit dynamics. We obtain compatible universal properties in each case, indicating that the entangling-disentangling phase transition is generic for projectively measured many-body systems. We discuss the significance of this transition for numerical calculations of quantum observables in many-body systems.

[1]  K. Mølmer,et al.  Wave-function approach to dissipative processes in quantum optics. , 1992, Physical review letters.

[2]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[3]  W. Marsden I and J , 2012 .

[4]  D. Huse,et al.  Operator Spreading and the Emergence of Dissipative Hydrodynamics under Unitary Evolution with Conservation Laws , 2017, Physical Review X.

[5]  T. Prosen,et al.  Many-body localization in the Heisenberg XXZ magnet in a random field , 2007, 0706.2539.

[6]  J. Cardy,et al.  Entanglement entropy and conformal field theory , 2009, 0905.4013.

[7]  J. W. Essam,et al.  Critical Percolation Probabilities by Series Methods , 1964 .

[8]  Thomas Hartman,et al.  Entanglement scrambling in 2d conformal field theory , 2015, 1506.03772.

[9]  P. Knight,et al.  The Quantum jump approach to dissipative dynamics in quantum optics , 1997, quant-ph/9702007.

[10]  M. Mezei On entanglement spreading from holography , 2016, 1612.00082.

[11]  T. Prosen,et al.  Many-Body Quantum Chaos: Analytic Connection to Random Matrix Theory , 2017, Physical Review X.

[12]  Daniel A. Roberts,et al.  Holographic Complexity Equals Bulk Action? , 2016, Physical review letters.

[13]  R. Durrett,et al.  Critical behavior of the two-dimensional first passage time , 1986 .

[14]  D. Stanford,et al.  On entanglement spreading in chaotic systems , 2016, Journal of High Energy Physics.

[15]  Coniglio Fractal structure of Ising and Potts clusters: Exact results. , 1989, Physical review letters.

[16]  C. Laumann,et al.  Semiclassical limit for the many-body localization transition , 2015, 1501.01971.

[17]  B. Swingle,et al.  Entanglement Renormalization and Holography , 2009, 0905.1317.

[18]  Jordan S. Cotler,et al.  Chaos, complexity, and random matrices , 2017, Journal of High Energy Physics.

[19]  S. Sondhi,et al.  Operator Hydrodynamics, OTOCs, and Entanglement Growth in Systems without Conservation Laws , 2017, 1705.08910.

[20]  Mile Gu,et al.  Quantum Computation as Geometry , 2006, Science.

[21]  S. Lloyd,et al.  Generalized Entanglement Entropies of Quantum Designs. , 2017, Physical review letters.

[22]  P. Hayden,et al.  Holographic duality from random tensor networks , 2016, 1601.01694.

[23]  J. Dubail,et al.  Conformal boundary conditions in the critical O(n) model and dilute loop models , 2009, 0905.1382.

[24]  J. P. Garrahan,et al.  Characterization of dynamical phase transitions in quantum jump trajectories beyond the properties of the stationary state. , 2012, Physical review letters.

[25]  Amos Chan,et al.  Unitary-projective entanglement dynamics , 2018, Physical Review B.

[26]  Daniel A. Roberts,et al.  Localized shocks , 2014, 1409.8180.

[27]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[28]  Gil Refael,et al.  Quantum dynamics of thermalizing systems , 2017, 1707.01506.

[29]  Marko Znidaric,et al.  Exact convergence times for generation of random bipartite entanglement , 2008, 0809.0554.

[30]  J. Preskill,et al.  Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence , 2015, 1503.06237.

[31]  Adam R. Brown,et al.  Quantum complexity and negative curvature , 2016, 1608.02612.

[32]  M. Bauer,et al.  Computing the rates of measurement-induced quantum jumps , 2014, 1410.7231.

[33]  Saleur,et al.  Exact tricritical exponents for polymers at the FTHETA point in two dimensions. , 1987, Physical review letters.

[34]  Weak measurements limit entanglement to area law (with possible log corrections) , 2018 .

[35]  H. Kesten Aspects of first passage percolation , 1986 .

[36]  M. Znidaric,et al.  Diffusive and Subdiffusive Spin Transport in the Ergodic Phase of a Many-Body Localizable System. , 2016, Physical review letters.

[37]  J Eisert,et al.  Entanglement-Ergodic Quantum Systems Equilibrate Exponentially Well. , 2018, Physical review letters.

[38]  S. J. Suh,et al.  Entanglement tsunami: universal scaling in holographic thermalization. , 2013, Physical review letters.

[39]  M. Bauer,et al.  Stochastic dissipative quantum spin chains (I) : Quantum fluctuating discrete hydrodynamics , 2017, 1706.03984.

[40]  Gardiner,et al.  Monte Carlo simulation of master equations in quantum optics for vacuum, thermal, and squeezed reservoirs. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[41]  École d'été de probabilités de Saint-Flour,et al.  École d'été de probabilités de Saint Flour XIV, 1984 , 1986 .

[42]  M. Knap Entanglement production and information scrambling in a noisy spin system , 2018, Physical Review B.

[43]  J. P. Garrahan,et al.  Thermodynamics of quantum jump trajectories. , 2009, Physical review letters.

[44]  Jeongwan Haah,et al.  Quantum Entanglement Growth Under Random Unitary Dynamics , 2016, 1608.06950.

[45]  M. Mezei Membrane theory of entanglement dynamics from holography , 2018, Physical Review D.

[46]  D. Aharonov Quantum to classical phase transition in noisy quantum computers , 1999, quant-ph/9910081.

[47]  Zhang,et al.  Dynamic scaling of growing interfaces. , 1986, Physical review letters.

[48]  D. Huse,et al.  Coarse-grained dynamics of operator and state entanglement , 2018, 1803.00089.

[49]  J. Chalker,et al.  Solution of a Minimal Model for Many-Body Quantum Chaos , 2017, Physical Review X.

[50]  A. Lamacraft,et al.  Noisy coupled qubits: Operator spreading and the Fredrickson-Andersen model , 2018, Physical Review B.

[51]  H. Casini,et al.  Spread of entanglement and causality , 2015, 1509.05044.

[52]  Joel E Moore,et al.  Unbounded growth of entanglement in models of many-body localization. , 2012, Physical review letters.

[53]  A. Lauchli,et al.  Superoperators vs. Trajectories for Matrix Product State Simulations of Open Quantum System: A Case Study , 2014, 1411.4831.

[54]  Daniel A. Roberts,et al.  Chaos in quantum channels , 2015, 1511.04021.

[55]  E. B. Davies Quantum theory of open systems , 1976 .

[56]  Dmitry A. Abanin,et al.  Entanglement dynamics in quantum many-body systems , 2015, 1508.03784.

[57]  L. Susskind Computational complexity and black hole horizons , 2014, 1402.5674.

[58]  Klaus Mølmer,et al.  A Monte Carlo wave function method in quantum optics , 1993, Optical Society of America Annual Meeting.

[59]  D. Gaunt,et al.  Series study of random percolation in three dimensions , 1983 .

[60]  D. Huse,et al.  Velocity-dependent Lyapunov exponents in many-body quantum, semiclassical, and classical chaos , 2018, Physical Review B.

[61]  J. P. Garrahan,et al.  Dynamical phases and intermittency of the dissipative quantum Ising model , 2011, 1112.4273.

[62]  David A. Huse,et al.  Quantum thermalization dynamics with Matrix-Product States , 2017, 1702.08894.

[63]  Denis Bernard,et al.  Convergence of repeated quantum nondemolition measurements and wave-function collapse , 2011, 1106.4953.

[64]  Critical curves in conformally invariant statistical systems , 2006, cond-mat/0610550.

[65]  E. Knill Approximation by Quantum Circuits , 1995 .

[66]  J. M. Hammersley,et al.  Critical Percolation Probabilities (Bond Problem) , 1961 .

[67]  Spikes in quantum trajectories , 2015, 1510.01232.

[68]  Yingfei Gu,et al.  Spread of entanglement in a Sachdev-Ye-Kitaev chain , 2017, 1708.00871.

[69]  Hyungwon Kim,et al.  Ballistic spreading of entanglement in a diffusive nonintegrable system. , 2013, Physical review letters.

[70]  M. B. Plenio,et al.  The emergence of typical entanglement in two-party random processes , 2007 .

[71]  D. Huse,et al.  Huse, Henley, and Fisher respond. , 1985, Physical review letters.

[72]  T. Zhou,et al.  Emergent statistical mechanics of entanglement in random unitary circuits , 2018, Physical Review B.

[73]  Youjin Deng,et al.  Simultaneous analysis of three-dimensional percolation models , 2013, 1310.5399.

[74]  S. Deleglise,et al.  Quantum jumps of light recording the birth and death of a photon in a cavity , 2006, Nature.

[75]  Adam R. Brown,et al.  Second law of quantum complexity , 2017, 1701.01107.

[76]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[77]  C. Macklin,et al.  Observing single quantum trajectories of a superconducting quantum bit , 2013, Nature.

[78]  Daniel A. Roberts,et al.  Chaos and complexity by design , 2016, 1610.04903.

[79]  F. Verstraete,et al.  Matrix product states represent ground states faithfully , 2005, cond-mat/0505140.

[80]  R. Fazio,et al.  Entanglement entropy dynamics of Heisenberg chains , 2005, cond-mat/0512586.

[81]  James M. Hickey,et al.  Time-integrated observables as order parameters for full counting statistics transitions in closed quantum systems , 2012, 1211.4773.

[82]  F. Pollmann,et al.  Diffusive Hydrodynamics of Out-of-Time-Ordered Correlators with Charge Conservation , 2017, Physical Review X.

[83]  Matthew Rispoli,et al.  Quantum thermalization through entanglement in an isolated many-body system , 2016, Science.

[84]  Matthew P. A. Fisher,et al.  Quantum Zeno effect and the many-body entanglement transition , 2018, Physical Review B.

[85]  Michael A. Nielsen,et al.  A geometric approach to quantum circuit lower bounds , 2005, Quantum Inf. Comput..

[86]  Jeongwan Haah,et al.  Operator Spreading in Random Unitary Circuits , 2017, 1705.08975.

[87]  J. Chalker,et al.  Spectral Statistics in Spatially Extended Chaotic Quantum Many-Body Systems. , 2018, Physical review letters.

[88]  L. Susskind,et al.  Complexity and Shock Wave Geometries , 2014, 1406.2678.

[89]  A. Ludwig,et al.  Entanglement transitions from holographic random tensor networks , 2018, Physical Review B.

[90]  Andrew J. Daley,et al.  Quantum trajectories and open many-body quantum systems , 2014, 1405.6694.

[91]  J. Cardy,et al.  Evolution of entanglement entropy in one-dimensional systems , 2005, cond-mat/0503393.

[92]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[93]  A. Green,et al.  The Lyapunov spectra of quantum thermalisation , 2018, Nature Communications.