A Two-Scale Nonperturbative Approach to Uncertainty Analysis of Diffusion in Random Composites

Many physical systems, such as natural porous media, are highly heterogeneous and characterized by parameters that are uncertain due to the lack of sufficient data. This uncertainty (randomness) occurs on a multiplicity of scales. We focus on random composites with the two dominant scales of uncertainty: large-scale uncertainty in the spatial arrangement of materials and small-scale uncertainty in the parameters within each material. We propose an approach that combines random domain decompositions and polynomial chaos expansions to account for the large and small scales of uncertainty, respectively. We present a general framework and use one-dimensional diffusion to demonstrate that our combined approach provides robust, nonperturbative approximations for the statistics of system states.

[1]  Tian-Chyi J. Yeh,et al.  Applied Stochastic Hydrogeology. , 2005 .

[2]  R. Askey,et al.  Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , 1985 .

[3]  T. F. Russell,et al.  Eulerian Moment Equations for 2-D Stochastic Immiscible Flow , 2003, Multiscale Model. Simul..

[4]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[5]  Daniel M. Tartakovsky,et al.  Probabilistic reconstruction of geologic facies , 2004 .

[6]  D. Xiu,et al.  A new stochastic approach to transient heat conduction modeling with uncertainty , 2003 .

[7]  Rene F. Swarttouw,et al.  The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Report Fac , 1996, math/9602214.

[8]  M. Riva,et al.  Stochastic averaging of nonlinear flows in heterogeneous porous media , 2003, Journal of Fluid Mechanics.

[9]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  Daniel M. Tartakovsky,et al.  Extension of “Transient flow in bounded randomly heterogeneous domains: 1, Exact conditional moment equations and recursive approximations” , 1999 .

[11]  I. Babuska,et al.  Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .

[12]  D. Xiu,et al.  Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .

[13]  L. Gelhar Stochastic Subsurface Hydrology , 1992 .

[14]  Daniel M. Tartakovsky,et al.  Mean Flow in composite porous media , 2000 .

[15]  V. Naroditsky Wave Propagation in Random Media , 1989 .

[16]  Daniel M. Tartakovsky,et al.  Numerical solutions of moment equations for flow in heterogeneous composite aquifers , 2002 .

[17]  Daniel M. Tartakovsky,et al.  Groundwater flow in heterogeneous composite aquifers , 2002 .

[18]  Roger Ghanem,et al.  Scales of fluctuation and the propagation of uncertainty in random porous media , 1998 .

[19]  Gedeon Dagan,et al.  Subsurface flow and transport : a stochastic approach , 1997 .

[20]  R. Ghanem Stochastic Finite Elements For Heterogeneous Media with Multiple Random Non-Gaussian Properties , 1997 .

[21]  Roger Ghanem,et al.  Stochastic Finite Elements with Multiple Random Non-Gaussian Properties , 1999 .

[22]  Hisanao Ogura,et al.  Orthogonal functionals of the Poisson process , 1972, IEEE Trans. Inf. Theory.

[23]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[24]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[25]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[26]  A. Yaglom Correlation Theory of Stationary and Related Random Functions I: Basic Results , 1987 .

[27]  Daniel M. Tartakovsky,et al.  Erratum: Transient flow in bounded randomly heterogeneous domains, 1, Exact conditional moment equations and recursive approximations (Water Resources Research (1998) 34:1 (1-12)) , 1999 .

[28]  John H. Cushman,et al.  The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles , 1997 .

[29]  G. Dagan Flow and transport in porous formations , 1989 .

[30]  Daniel M. Tartakovsky,et al.  Random domain decomposition for flow in heterogeneous stratified aquifers , 2003 .

[31]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .