Meep: A flexible free-software package for electromagnetic simulations by the FDTD method

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[3]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[4]  David A. Patterson,et al.  Computer Architecture: A Quantitative Approach , 1969 .

[5]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[6]  N. Ream Discrete-Time Signal Processing , 1977 .

[7]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[8]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[9]  Gerald J. Sussman,et al.  Structure and interpretation of computer programs , 1985, Proceedings of the IEEE.

[10]  A. Taflove,et al.  Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects , 1986 .

[11]  Stanley Cabay,et al.  Algebraic Computations of Scaled Padé Fractions , 1986, SIAM J. Comput..

[12]  A. Christ,et al.  Three-Dimensional Finite-Difference Method for the Analysis of Microwave-Device Embedding , 1987 .

[13]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[14]  I. S. Kim,et al.  A local mesh refinement algorithm for the time domain-finite difference method using Maxwell's curl equations , 1990 .

[15]  T. Inui,et al.  Group theory and its applications in physics , 1990 .

[16]  K. Yee,et al.  A subgridding method for the time-domain finite-difference method to solve Maxwell's equations , 1991 .

[17]  M. Sadiku Numerical Techniques in Electromagnetics , 2000 .

[18]  D. R. Fokkema,et al.  BICGSTAB( L ) FOR LINEAR EQUATIONS INVOLVING UNSYMMETRIC MATRICES WITH COMPLEX , 1993 .

[19]  Corporate The MPI Forum,et al.  MPI: a message passing interface , 1993, Supercomputing '93.

[20]  R. Luebbers,et al.  The Finite Difference Time Domain Method for Electromagnetics , 1993 .

[21]  J. Joannopoulos,et al.  Accurate theoretical analysis of photonic band-gap materials. , 1993, Physical review. B, Condensed matter.

[22]  Young,et al.  Completeness and time-independent perturbation of the quasinormal modes of an absorptive and leaky cavity. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[23]  Forum Mpi MPI: A Message-Passing Interface , 1994 .

[24]  David H. Bailey,et al.  A Fast Method for the Numerical Evaluation of Continuous Fourier and Laplace Transforms , 1994, SIAM J. Sci. Comput..

[25]  Peter H. Salus,et al.  A quarter century of UNIX , 1994 .

[26]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[27]  Ziółkowski,et al.  Ultrafast pulse interactions with two-level atoms. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[28]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[29]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[30]  R. Sorrentino,et al.  A simple way to model curved metal boundaries in FDTD algorithm avoiding staircase approximation , 1995 .

[31]  S. Stuchly,et al.  Practical 3-D contour/staircase treatment of metals in FDTD , 1996 .

[32]  M. Okoniewski,et al.  Three-dimensional subgridding algorithm for FDTD , 1997 .

[33]  J. Joannopoulos,et al.  Erratum: Accurate theoretical analysis of photonic band-gap materials [Phys. Rev. B 48, 8434 (1993)] , 1997 .

[34]  W. Chew,et al.  Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates , 1997 .

[35]  V. Mandelshtam,et al.  Harmonic inversion of time signals and its applications , 1997 .

[36]  R. Mittra,et al.  Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finite-difference time-domain technique and the Pade approximation , 1998 .

[37]  A. Nagra,et al.  FDTD analysis of wave propagation in nonlinear absorbing and gain media , 1998 .

[38]  Q. Liu,et al.  Quasi‐PML for waves in cylindrical coordinates , 1998 .

[39]  Robert E. McGrath,et al.  HDF: an update and future directions , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[40]  Qing Huo Liu,et al.  A nonuniform cylindrical FDTD algorithm with improved PML and quasi-PML absorbing boundary conditions , 1999, IEEE Trans. Geosci. Remote. Sens..

[41]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[42]  M. Bonnet Boundary Integral Equation Methods for Solids and Fluids , 1999 .

[43]  R. Mittra,et al.  A conformal finite-difference time-domain technique for modeling cylindrical dielectric resonators , 1999 .

[44]  Seyed H. Roosta Principles of Parallel Programming , 2000 .

[45]  Dennis M. Sullivan,et al.  Electromagnetic Simulation Using the FDTD Method , 2000 .

[46]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[47]  Carretera de Valencia,et al.  The finite element method in electromagnetics , 2000 .

[48]  Weijun Li,et al.  Computation of resonant frequencies and quality factors of cavities by FDTD technique and Pade approximation , 2001, IEEE Microwave and Wireless Components Letters.

[49]  J. Hesthaven,et al.  Convergent Cartesian Grid Methods for Maxwell's Equations in Complex Geometries , 2001 .

[50]  Jian-Ming Jin,et al.  Fast and Efficient Algorithms in Computational Electromagnetics , 2001 .

[51]  Steven G. Johnson,et al.  Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. , 2001, Optics express.

[52]  Steven G. Johnson,et al.  Perturbation theory for Maxwell's equations with shifting material boundaries. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Steven G. Johnson,et al.  Cerenkov Radiation in Photonic Crystals , 2003, Science.

[54]  A. Pattantyus-Abraham,et al.  Cherenkov radiation in photonic crystals , 2004 .

[55]  Fabrice Labeau,et al.  Discrete Time Signal Processing , 2004 .

[56]  A. Taflove,et al.  Finite-difference time-domain model of lasing action in a four-level two-electron atomic system. , 2004, Optics express.

[57]  Steven G. Johnson,et al.  Disorder-immune confinement of light in photonic-crystal cavities. , 2005, Optics letters.

[58]  Gerard L. G. Sleijpen,et al.  BiCGstab(l) and other hybrid Bi-CG methods , 1994, Numerical Algorithms.

[59]  M. Soljačić,et al.  Roughness losses and volume-current methods in photonic-crystal waveguides , 2005 .

[60]  K. Yasumoto Electromagnetic Theory and Applications for Photonic Crystals , 2005 .

[61]  H. Ikuno Electromagnetic Theory and Applications for Photonic Crystals , 2018 .

[62]  Melinda Piket-May,et al.  9 – Computational Electromagnetics: The Finite-Difference Time-Domain Method , 2005 .

[63]  S. Ho,et al.  Computational model of solid-state, molecular, or atomic media for FDTD simulation based on a multi-level multi-electron system governed by Pauli exclusion and Fermi-Dirac thermalization with application to semiconductor photonics. , 2006, Optics Express.

[64]  Wenhua. Wenhua Yu ... . Yu,et al.  Parallel Finite-Difference Time-Domain Method , 2006 .

[65]  Steven G. Johnson,et al.  Improving accuracy by subpixel smoothing in the finite-difference time domain. , 2006, Optics letters.

[66]  J. Joannopoulos,et al.  Active materials embedded in photonic crystals and coupled to electromagnetic radiation , 2006 .

[67]  R. Mittra,et al.  Parallel Finite-Difference Time-Domain Method (Artech House Electromagnetic Analysis) , 2006 .

[68]  Volker Strumpen,et al.  The memory behavior of cache oblivious stencil computations , 2007, The Journal of Supercomputing.

[69]  John R. Cary,et al.  A stable FDTD algorithm for non-diagonal, anisotropic dielectrics , 2007, J. Comput. Phys..

[70]  A. Deinega,et al.  Subpixel smoothing for conductive and dispersive media in the finite-difference time-domain method. , 2007, Optics Letters.

[71]  M. Soljačić,et al.  Reflection-free one-way edge modes in a gyromagnetic photonic crystal. , 2007, Physical review letters.

[72]  Steven G. Johnson,et al.  A novel boundary element method with surface conductive absorbers for 3-D analysis of nanophotonics , 2008, 2008 IEEE MTT-S International Microwave Symposium Digest.

[73]  Steven G. Johnson,et al.  The failure of perfectly matched layers, and towards their redemption by adiabatic absorbers. , 2008, Optics express.

[74]  Steven G. Johnson,et al.  Perturbation theory for anisotropic dielectric interfaces, and application to subpixel smoothing of discretized numerical methods. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[75]  Steven G. Johnson,et al.  Accurate finite-difference time-domain simulation of anisotropic media by subpixel smoothing. , 2009, Optics letters.

[76]  Steven G. Johnson,et al.  Casimir forces in the time domain: Theory , 2009, 0904.0267.

[77]  Jianming Jin The Finite Element Method , 2010 .

[78]  Steven G. Johnson,et al.  Casimir forces in the time domain: Applications , 2009, 0906.5170.