Aldehydes as alkylating agents for ketones.

Common and non-toxic aldehydes are proposed as reagents for alkylation of ketones instead of carcinogenic alkyl halides. The developed reductive alkylation reaction proceeds in the presence of the commercially available ruthenium catalyst [(cymene)RuCl2]2 (as low as 250 ppm) and a carbon monoxide as the reducing agent. The reaction works well for a broad substrate scope, including aromatic and aliphatic aldehydes and ketones. It can be carried out without a solvent and often gives nearly quantitative yields of the products. This straightforward and cost-effective method is promising not only for laboratory application but also for industry, which produce carbon monoxide as a large scale waste product.

[1]  L. Cavallo,et al.  Nickel-catalyzed Suzuki–Miyaura cross-couplings of aldehydes , 2019, Nature Communications.

[2]  P. Wasserscheid,et al.  Mechanism of the Water-Gas Shift Reaction Catalyzed by Efficient Ruthenium-Based Catalysts: A Computational and Experimental Study. , 2018, Angewandte Chemie.

[3]  F. Glorius,et al.  In Water and under Mild Conditions: α-Alkylation of Ketones with Alcohols by Phase-Transfer-Assisted Borrowing Hydrogen Catalysis. , 2018, Chemistry.

[4]  F. Glorius,et al.  Diastereoselective Allylation of Aldehydes by Dual Photoredox and Chromium Catalysis. , 2018, Journal of the American Chemical Society.

[5]  H. Gavala,et al.  Reactor systems for syngas fermentation processes: A review , 2018, Chemical Engineering Journal.

[6]  D. Chusov,et al.  Carbon monoxide as a selective reducing agent in organic chemistry , 2018 .

[7]  P. Wasserscheid,et al.  Dynamic equilibria in supported ionic liquid phase (SILP) catalysis: in situ IR spectroscopy identifies [Ru(CO)xCly]n species in water gas shift catalysis , 2018 .

[8]  F. Aricò,et al.  The reactions of dimethyl carbonate and its derivatives , 2018 .

[9]  E. Eikeland,et al.  Efficient Water Reduction with sp3 -sp3 Diboron(4) Compounds: Application to Hydrogenations, H-D Exchange Reactions, and Carbonyl Reductions. , 2017, Angewandte Chemie.

[10]  Malek Y. S. Ibrahim,et al.  Room Temperature, Reductive Alkylation of Activated Methylene Compounds: Carbon–Carbon Bond Formation Driven by the Rhodium-Catalyzed Water–Gas Shift Reaction , 2017 .

[11]  Miguel Peña‐López,et al.  Manganese-Catalyzed Hydrogen-Autotransfer C-C Bond Formation: α-Alkylation of Ketones with Primary Alcohols. , 2016, Angewandte Chemie.

[12]  S. Denmark,et al.  Harnessing the Power of the Water-Gas Shift Reaction for Organic Synthesis. , 2016, Angewandte Chemie.

[13]  Scott E. Denmark,et al.  Die Wassergas-Shift-Reaktion in der organischen Synthese , 2016 .

[14]  L. T. Angenent,et al.  Carbon recovery by fermentation of CO-rich off gases - Turning steel mills into biorefineries. , 2016, Bioresource technology.

[15]  T. Skrydstrup,et al.  Direct Access to α,α-Difluoroacylated Arenes by Palladium-Catalyzed Carbonylation of (Hetero)Aryl Boronic Acid Derivatives. , 2016, Angewandte Chemie.

[16]  F. Glorius,et al.  Ruthenium-NHC Catalyzed α-Alkylation of Methylene Ketones Provides Branched Products through Borrowing Hydrogen Strategy , 2016 .

[17]  S. Harutyunyan,et al.  Synthesis of Chiral Tertiary Alcohols by Cu(I) -Catalyzed Enantioselective Addition of Organomagnesium Reagents to Ketones. , 2016, Chemistry.

[18]  Neil G. Stevenson,et al.  Strategic Application and Transformation of ortho-Disubstituted Phenyl and Cyclopropyl Ketones To Expand the Scope of Hydrogen Borrowing Catalysis. , 2015, Journal of the American Chemical Society.

[19]  D. Usanov,et al.  Reductive Transformations of Carbonyl Compounds Catalyzed by Rhodium Supported on a Carbon Matrix by using Carbon Monoxide as a Deoxygenative Agent , 2015 .

[20]  A. Borah,et al.  Recent Advances in Transition Metal-Catalyzed Methylation Reactions , 2015 .

[21]  V. V. Levin,et al.  Difluorohomologation of ketones. , 2015, Organic letters.

[22]  Darren L. Poole,et al.  Hydrogen-Borrowing and Interrupted-Hydrogen-Borrowing Reactions of Ketones and Methanol Catalyzed by Iridium** , 2014, Angewandte Chemie.

[23]  D. Usanov,et al.  Atom- and step-economical preparation of reduced Knoevenagel adducts using CO as a deoxygenative agent. , 2014, Organic letters.

[24]  B. List,et al.  Reduktive Aminierung ohne externe Wasserstoffquelle , 2014 .

[25]  B. List,et al.  Reductive amination without an external hydrogen Source. , 2014, Angewandte Chemie.

[26]  Darren L. Poole,et al.  Rhodium-Catalyzed Ketone Methylation Using Methanol Under Mild Conditions: Formation of α-Branched Products** , 2013, Angewandte Chemie.

[27]  Heike Schönherr,et al.  Ausgeprägte Methyleffekte in der Wirkstoff‐Forschung und der Bedarf an neuen C‐H‐Methylierungsreaktionen , 2013 .

[28]  Heike Schönherr,et al.  Profound methyl effects in drug discovery and a call for new C-H methylation reactions. , 2013, Angewandte Chemie.

[29]  D. Wink,et al.  Pyridine group assisted addition of diazo-compounds to imines in the 3-CC reaction of 2-aminopyridines, aldehydes, and diazo-compounds. , 2013, Organic letters.

[30]  V. Gevorgyan,et al.  One-pot arylative epoxidation of ketones by employing amphoteric bromoperfluoroarenes. , 2012, Angewandte Chemie.

[31]  E. Barreiro,et al.  The methylation effect in medicinal chemistry. , 2011, Chemical reviews.

[32]  P. Giannoccaro,et al.  One-pot catalytic synthesis of higher aliphatic ketones , 2007 .

[33]  T. Hedner,et al.  Nabumetone: therapeutic use and safety profile in the management of osteoarthritis and rheumatoid arthritis. , 2004 .

[34]  Anthony F. Hill „Einfache”︁ Rutheniumcarbonyle: neue Anwendungsmöglichkeiten der Hieber‐Basenreaktion , 2000 .

[35]  Hill "Simple" Carbonyls of Ruthenium: New Avenues from the Hieber Base Reaction. , 2000, Angewandte Chemie.

[36]  F. Abe,et al.  Ruthenium-Catalyzed Reductive Alkylation of Active Methylene Compounds with Aldehydes Under Synthesis Gas. , 1990 .

[37]  Yoshihisa Watanabe,et al.  RHODIUM CATALYZED α-METHYLATION OF KETONES WITH CARBON MONOXIDE-WATER-FORMALDEHYDE SYSTEM , 1978 .