Infinite dimensional stochastic calculus via regularization

This paper develops some aspects of stochastic calculus via regularization to Banach valued processes. An original concept of $\chi$-quadratic variation is introduced, where $\chi$ is a subspace of the dual of a tensor product $B \otimes B$ where $B$ is the values space of some process $X$ process. Particular interest is devoted to the case when $B$ is the space of real continuous functions defined on $[-\tau,0]$, $\tau>0$. Ito formulae and stability of finite $\chi$-quadratic variation processes are established. Attention is deserved to a finite real quadratic variation (for instance Dirichlet, weak Dirichlet) process $X$. The $C([-\tau,0])$-valued process $X(\cdot)$ defined by $X_t(y) = X_{t+y}$, where $y \in [-\tau,0]$, is called {\it window} process. Let $T >0$. If $X$ is a finite quadratic variation process such that $[X]_t = t$ and $h = H(X_T(\cdot))$ where $H:C([-T,0])\longrightarrow \R$ is $L^{2}([-T,0])$-smooth or $H$ non smooth but finitely based it is possible to represent $h$ as a sum of a real $H_{0}$ plus a forward integral of type $\int_0^T \xi d^-X$ where $H_{0}$ and $\xi$ are explicitly given. This representation result will be strictly linked with a function $u:[0,T]\times C([-T,0])\longrightarrow \R$ which in general solves an infinite dimensional partial differential equation with the property $H_{0}=u(0, X_{0}(\cdot))$, $\xi_{t}=D^{\delta_{0}}u(t, X_{t}(\cdot)):=Du(t,X_{t}(\cdot))(\{0\})$. This decomposition generalizes the Clark-Ocone formula which is true when $X$ is the standard Brownian motion $W$. The financial perspective of this work is related to hedging theory of path dependent options without semimartingales.

[1]  F. Flandoli,et al.  Generalized Integration and Stochastic ODEs , 2002 .

[2]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[3]  Francesco Russo,et al.  Verification theorems for stochastic optimal control problems via a time dependent Fukushima-Dirichlet decomposition , 2006, math/0604327.

[4]  Robert C. Dalang,et al.  Corrections to: Extending the martingale measure stochastic integral with applications to spatially homogeneous S.P.D.E. 's , 1999 .

[5]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[6]  J. Neerven,et al.  A Semigroup Approach to Stochastic Delay Equations in Spaces of Continuous Functions , 2007 .

[7]  David Nualart,et al.  An Anticipating Calculus Approach to the Utility Maximization of an Insider , 2003 .

[8]  P. Protter Stochastic integration and differential equations , 1990 .

[9]  渡辺 信三 Lectures on stochastic differential equations and Malliavin calculus , 1984 .

[10]  P. Vallois,et al.  Generalized covariations, local time and Stratonovich Itô's formula for fractional Brownian motion with Hurst index H>=1/4 , 2003 .

[11]  M. Zähle,et al.  Gradient-type noises I–partial and hybrid integrals , 2009 .

[12]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[13]  Mohammed Errami,et al.  Covariation de convolution de martingales , 1998 .

[14]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[15]  P. Balachandran Stochastic Integration , 2021, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[16]  P. Vallois,et al.  Stochastic calculus with respect to continuous finite quadratic variation processes , 2000 .

[17]  P. Vallois,et al.  A generalized class of Lyons-Zheng processes , 2001 .

[18]  Bernt Øksendal,et al.  MALLIAVIN CALCULUS AND ANTICIPATIVE ITÔ FORMULAE FOR LÉVY PROCESSES , 2005 .

[19]  Francesco Russo,et al.  n-covariation, generalized Dirichlet processes and calculus with respect to finite cubic variation processes , 2003 .

[20]  É. Pardoux,et al.  Équations aux dérivées partielles stochastiques non linéaires monotones : étude de solutions fortes de type Ito , 1975 .

[21]  Elements of Stochastic Calculus via Regularization , 2006, math/0603224.

[22]  JB Clément,et al.  Weak Dirichlet processes with a stochastic control perspective , 2006, math/0604326.

[23]  D. Nualart,et al.  A decomposition of the bifractional Brownian motion and some applications , 2008, 0803.2227.

[24]  N. Dinculeanu Vector Integration and Stochastic Integration in Banach Spaces , 2000, Oxford Handbooks Online.

[25]  J. Jacod Calcul stochastique et problèmes de martingales , 1979 .

[26]  M. Zähle Integration with respect to fractal functions and stochastic calculus. I , 1998 .

[27]  École d'été de probabilités de Saint-Flour,et al.  École d'été de probabilités de Saint Flour XIV, 1984 , 1986 .

[28]  P. Malliavin Infinite dimensional analysis , 1993 .

[29]  M. Röckner,et al.  A Concise Course on Stochastic Partial Differential Equations , 2007 .

[30]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[31]  C. Houdré,et al.  An Example of Inflnite Dimensional Quasi{Helix , 2003 .

[32]  Tommi Sottinen,et al.  Pricing by hedging and no-arbitrage beyond semimartingales , 2008, Finance Stochastics.

[33]  Agnès Sulem,et al.  UTILITY MAXIMIZATION IN AN INSIDER INFLUENCED MARKET , 2006 .

[34]  F. Coquet,et al.  Natural Decomposition of Processes and Weak Dirichlet Processes , 2004, math/0403461.

[35]  P. Vallois,et al.  Intégrales progressive, rétrograde et symétrique de processus non adaptés , 1991 .

[36]  E. Dettweiler On the martingale problem for Banach space valued stochastic differential equations , 1989 .

[37]  M. Yor,et al.  On weak brownian motions of arbitrary order , 2000 .

[38]  Non-semimartingales: stochastic differential equations and weak Dirichlet processes , 2006, math/0602384.

[39]  A. Üstünel Representation of the distributions on Wiener space and stochastic calculus of variations , 1987 .

[40]  F. Trèves Topological vector spaces, distributions and kernels , 1967 .

[41]  E. Pardoux,et al.  Équations aux dérivées partielles stochastiques de type monotone , 1975 .

[42]  Robust option replication for a Black-Scholes model extended with nondeterministic trends , 1999 .

[43]  J. Diestel,et al.  On vector measures , 1974 .

[44]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[45]  R. Ryan Introduction to Tensor Products of Banach Spaces , 2002 .

[46]  Francesco Russo,et al.  m-order integrals and generalized Ito's formula; the case of a fractional Brownian motion with any Hurst index , 2005 .

[47]  Stig Larsson,et al.  Introduction to stochastic partial differential equations , 2008 .

[48]  B. Øksendal,et al.  THE ITÔ-VENTZELL FORMULA AND FORWARD STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY POISSON RANDOM MEASURES , 2007 .

[49]  Multidimensional bifractional Brownian motion: Ito and Tanaka formulas , 2007, math/0703087.

[50]  Modeling financial assets without semimartingales , 2006, math/0606642.

[51]  B. Øksendal,et al.  A General Stochastic Calculus Approach to Insider Trading , 2005 .

[52]  Wiener integrals, Malliavin calculus and covariance measure structure , 2006, math/0606069.

[53]  F. Flandoli,et al.  Some SDEs with distributional drift. , 2004 .

[54]  Francesco Russo,et al.  Forward, backward and symmetric stochastic integration , 1993 .

[55]  M. Solomjak,et al.  Spectral theory of selfadjoint operators in Hilbert space , 1987 .

[56]  Zdzisław Brzeźniak,et al.  Stochastic partial differential equations in M-type 2 Banach spaces , 1995 .

[57]  S. Mohammed,et al.  A Stochastic Calculus for Systems with Memory , 2005 .

[58]  S. Albeverio,et al.  Stochastic Integrals and the Lévy–Ito Decomposition Theorem on Separable Banach Spaces , 2005 .

[59]  J. Neveu,et al.  Processus aléatoires gaussiens , 1968 .

[60]  Francesco Russo,et al.  On bifractional Brownian motion , 2005 .

[61]  J. Bertoin Les processus de dirichlet et tant qu'espace de banach , 1986 .

[62]  Wilhelm Stannat,et al.  The theory of generalized Dirichlet forms and its applications in analysis and stochastics , 1999 .

[63]  Francesco Russo,et al.  The generalized covariation process and Ito formula , 1995 .