Infinite dimensional stochastic calculus via regularization
暂无分享,去创建一个
[1] F. Flandoli,et al. Generalized Integration and Stochastic ODEs , 2002 .
[2] A. Shiryaev,et al. Limit Theorems for Stochastic Processes , 1987 .
[3] Francesco Russo,et al. Verification theorems for stochastic optimal control problems via a time dependent Fukushima-Dirichlet decomposition , 2006, math/0604327.
[4] Robert C. Dalang,et al. Corrections to: Extending the martingale measure stochastic integral with applications to spatially homogeneous S.P.D.E. 's , 1999 .
[5] T. Kurtz,et al. Stochastic equations in infinite dimensions , 2006 .
[6] J. Neerven,et al. A Semigroup Approach to Stochastic Delay Equations in Spaces of Continuous Functions , 2007 .
[7] David Nualart,et al. An Anticipating Calculus Approach to the Utility Maximization of an Insider , 2003 .
[8] P. Protter. Stochastic integration and differential equations , 1990 .
[9] 渡辺 信三. Lectures on stochastic differential equations and Malliavin calculus , 1984 .
[10] P. Vallois,et al. Generalized covariations, local time and Stratonovich Itô's formula for fractional Brownian motion with Hurst index H>=1/4 , 2003 .
[11] M. Zähle,et al. Gradient-type noises I–partial and hybrid integrals , 2009 .
[12] D. Nualart. The Malliavin Calculus and Related Topics , 1995 .
[13] Mohammed Errami,et al. Covariation de convolution de martingales , 1998 .
[14] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[15] P. Balachandran. Stochastic Integration , 2021, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.
[16] P. Vallois,et al. Stochastic calculus with respect to continuous finite quadratic variation processes , 2000 .
[17] P. Vallois,et al. A generalized class of Lyons-Zheng processes , 2001 .
[18] Bernt Øksendal,et al. MALLIAVIN CALCULUS AND ANTICIPATIVE ITÔ FORMULAE FOR LÉVY PROCESSES , 2005 .
[19] Francesco Russo,et al. n-covariation, generalized Dirichlet processes and calculus with respect to finite cubic variation processes , 2003 .
[20] É. Pardoux,et al. Équations aux dérivées partielles stochastiques non linéaires monotones : étude de solutions fortes de type Ito , 1975 .
[21] Elements of Stochastic Calculus via Regularization , 2006, math/0603224.
[22] JB Clément,et al. Weak Dirichlet processes with a stochastic control perspective , 2006, math/0604326.
[23] D. Nualart,et al. A decomposition of the bifractional Brownian motion and some applications , 2008, 0803.2227.
[24] N. Dinculeanu. Vector Integration and Stochastic Integration in Banach Spaces , 2000, Oxford Handbooks Online.
[25] J. Jacod. Calcul stochastique et problèmes de martingales , 1979 .
[26] M. Zähle. Integration with respect to fractal functions and stochastic calculus. I , 1998 .
[27] École d'été de probabilités de Saint-Flour,et al. École d'été de probabilités de Saint Flour XIV, 1984 , 1986 .
[28] P. Malliavin. Infinite dimensional analysis , 1993 .
[29] M. Röckner,et al. A Concise Course on Stochastic Partial Differential Equations , 2007 .
[30] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[31] C. Houdré,et al. An Example of Inflnite Dimensional Quasi{Helix , 2003 .
[32] Tommi Sottinen,et al. Pricing by hedging and no-arbitrage beyond semimartingales , 2008, Finance Stochastics.
[33] Agnès Sulem,et al. UTILITY MAXIMIZATION IN AN INSIDER INFLUENCED MARKET , 2006 .
[34] F. Coquet,et al. Natural Decomposition of Processes and Weak Dirichlet Processes , 2004, math/0403461.
[35] P. Vallois,et al. Intégrales progressive, rétrograde et symétrique de processus non adaptés , 1991 .
[36] E. Dettweiler. On the martingale problem for Banach space valued stochastic differential equations , 1989 .
[37] M. Yor,et al. On weak brownian motions of arbitrary order , 2000 .
[38] Non-semimartingales: stochastic differential equations and weak Dirichlet processes , 2006, math/0602384.
[39] A. Üstünel. Representation of the distributions on Wiener space and stochastic calculus of variations , 1987 .
[40] F. Trèves. Topological vector spaces, distributions and kernels , 1967 .
[41] E. Pardoux,et al. Équations aux dérivées partielles stochastiques de type monotone , 1975 .
[42] Robust option replication for a Black-Scholes model extended with nondeterministic trends , 1999 .
[43] J. Diestel,et al. On vector measures , 1974 .
[44] Xiongzhi Chen. Brownian Motion and Stochastic Calculus , 2008 .
[45] R. Ryan. Introduction to Tensor Products of Banach Spaces , 2002 .
[46] Francesco Russo,et al. m-order integrals and generalized Ito's formula; the case of a fractional Brownian motion with any Hurst index , 2005 .
[47] Stig Larsson,et al. Introduction to stochastic partial differential equations , 2008 .
[48] B. Øksendal,et al. THE ITÔ-VENTZELL FORMULA AND FORWARD STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY POISSON RANDOM MEASURES , 2007 .
[49] Multidimensional bifractional Brownian motion: Ito and Tanaka formulas , 2007, math/0703087.
[50] Modeling financial assets without semimartingales , 2006, math/0606642.
[51] B. Øksendal,et al. A General Stochastic Calculus Approach to Insider Trading , 2005 .
[52] Wiener integrals, Malliavin calculus and covariance measure structure , 2006, math/0606069.
[53] F. Flandoli,et al. Some SDEs with distributional drift. , 2004 .
[54] Francesco Russo,et al. Forward, backward and symmetric stochastic integration , 1993 .
[55] M. Solomjak,et al. Spectral theory of selfadjoint operators in Hilbert space , 1987 .
[56] Zdzisław Brzeźniak,et al. Stochastic partial differential equations in M-type 2 Banach spaces , 1995 .
[57] S. Mohammed,et al. A Stochastic Calculus for Systems with Memory , 2005 .
[58] S. Albeverio,et al. Stochastic Integrals and the Lévy–Ito Decomposition Theorem on Separable Banach Spaces , 2005 .
[59] J. Neveu,et al. Processus aléatoires gaussiens , 1968 .
[60] Francesco Russo,et al. On bifractional Brownian motion , 2005 .
[61] J. Bertoin. Les processus de dirichlet et tant qu'espace de banach , 1986 .
[62] Wilhelm Stannat,et al. The theory of generalized Dirichlet forms and its applications in analysis and stochastics , 1999 .
[63] Francesco Russo,et al. The generalized covariation process and Ito formula , 1995 .