Gold-Copper Nanoparticles: Nanostructural Evolution and Bifunctional Catalytic Sites

Understanding of the atomic-scale structure is essential for exploiting the unique catalytic properties of any nanoalloy catalyst. This report describes novel findings of an investigation of the nanoscale alloying of gold–copper (AuCu) nanoparticles and its impact on the surface catalytic functions. Two pathways have been explored for the formation of AuCu nanoparticles of different compositions, including wet chemical synthesis from mixed Au- and Cu-precursor molecules, and nanoscale alloying via an evolution of mixed Au- and Cu-precursor nanoparticles near the nanoscale melting temperatures. For the evolution of mixed precursor nanoparticles, synchrotron X-ray-based in situ real-time XRD was used to monitor the structural changes, revealing nanoscale alloying and reshaping toward an fcc-type nanoalloy (particle or cube) via a partial melting–resolidification mechanism. The nanoalloys supported on carbon or silica were characterized by in situ high-energy XRD/atomic pair disributoin function (PDF) analys...

[1]  M. Engelhard,et al.  Role of support-nanoalloy interactions in the atomic-scale structural and chemical ordering for tuning catalytic sites. , 2012, Journal of the American Chemical Society.

[2]  M. Engelhard,et al.  Role of Metal Coordination Structures in Enhancement of Electrocatalytic Activity of Ternary Nanoalloys for Oxygen Reduction Reaction , 2012 .

[3]  A. Borgna,et al.  Activation and Deactivation of Au–Cu/SBA-15 Catalyst for Preferential Oxidation of CO in H2-Rich Gas , 2012 .

[4]  O. Malis,et al.  Harnessing molecule-solid duality of nanoclusters/nanoparticles for nanoscale control of size, shape and alloying. , 2011, Chemical communications.

[5]  M. Shao,et al.  Structural and electrocatalytic properties of PtIrCo/C catalysts for oxygen reduction reaction , 2011 .

[6]  Bin Fang,et al.  Gold-platinum nanoparticles: alloying and phase segregation , 2011 .

[7]  E. A. Payzant,et al.  Synthesis of silica supported AuCu nanoparticle catalysts and the effects of pretreatment conditions for the CO oxidation reaction. , 2011, Physical chemistry chemical physics : PCCP.

[8]  O. Malis,et al.  Low-temperature phase and morphology transformations in noble metal nanocatalysts , 2011, Nanotechnology.

[9]  Ian T. Sines,et al.  Au−Cu Alloy Nanoparticles with Tunable Compositions and Plasmonic Properties: Experimental Determination of Composition and Correlation with Theory , 2010 .

[10]  A. Walker,et al.  Monodisperse gold-copper bimetallic nanocubes: facile one-step synthesis with controllable size and composition. , 2010, Angewandte Chemie.

[11]  Joseph F. Parker,et al.  The story of a monodisperse gold nanoparticle: Au25L18. , 2010, Accounts of chemical research.

[12]  H. Kung,et al.  Study of Supported PtCu and PdAu Bimetallic Nanoparticles Using In-Situ X-ray Tools† , 2010 .

[13]  Yadong Li,et al.  A seed-based diffusion route to monodisperse intermetallic CuAu nanocrystals. , 2010, Angewandte Chemie.

[14]  X. Zeng,et al.  Icosahedral crown gold nanocluster au(43)cu(12) with high catalytic activity. , 2010, Nano letters.

[15]  M. Engelhard,et al.  From Ultrafine Thiolate-Capped Copper Nanoclusters toward Copper Sulfide Nanodiscs: A Thermally Activated Evolution Route , 2010 .

[16]  G. Hutchings,et al.  Application of copper-gold alloys in catalysis: current status and future perspectives. , 2009, Chemical Society reviews.

[17]  Leiming Wang,et al.  Tuning the electronic properties of the golden buckyball by endohedral doping: M@Au16(-) (M = Ag,Zn,In). , 2009, The Journal of chemical physics.

[18]  G. Brunklaus,et al.  Tuning Plasmonic Properties by Alloying Copper into Gold Nanorods , 2009 .

[19]  Lai‐Sheng Wang,et al.  Magnetic doping of the golden cage cluster M @Au 16 − ( M =Fe,Co,Ni) , 2009 .

[20]  M. Rossi,et al.  Highly selective oxidation of benzyl alcohol to benzaldehyde catalyzed by bimetallic gold–copper catalyst , 2008 .

[21]  V. Petkov Nanostructure by high- energy X-ray diffraction , 2008 .

[22]  J. Sueiras,et al.  Propene epoxidation over TiO2-supported Au-Cu alloy catalysts prepared from thiol-capped nanoparticles , 2008 .

[23]  Tao Zhang,et al.  Au-Cu Alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation. , 2008, Chemical communications.

[24]  Kavita Joshi,et al.  Electronic and structural investigations of gold clusters doped with copper: Aun-1Cu- (n=13-19). , 2008, The Journal of chemical physics.

[25]  Jin Luo,et al.  Fabrication of magnetic core@shell Fe oxide@Au nanoparticles for interfacial bioactivity and bio-separation. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[26]  M. Sun,et al.  Characteristics of copper oxide films deposited by PBII&D , 2007 .

[27]  S. Bulusu,et al.  Doping golden buckyballs:Cu@Au16- and Cu@Au17- cluster anions. , 2007, Angewandte Chemie.

[28]  Lingyan Wang,et al.  Synthesis of size-controlled and shaped copper nanoparticles. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[29]  A. A. Alexeenko,et al.  Size-dependent melting of spherical copper nanoparticles embedded in a silica matrix , 2007 .

[30]  J. Koberstein,et al.  Quantitative Analysis of Copper Oxide Nanoparticle Composition and Structure by X-ray Photoelectron Spectroscopy , 2006 .

[31]  W. Cheung,et al.  Molecularly Tuned Size Selectivity in Thermal Processing of Gold Nanoparticles , 2006 .

[32]  S. Hendy,et al.  Superheating and solid-liquid phase coexistence in nanoparticles with nonmelting surfaces. , 2006, Physical review letters.

[33]  B. E. Nieuwenhuys,et al.  Total oxidation of propene and propane over gold–copper oxide on alumina catalysts: Comparison with Pt/Al2O3 , 2006 .

[34]  F. Baletto,et al.  Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects , 2005 .

[35]  Peter N. Njoki,et al.  Phase Properties of Carbon-Supported Gold−Platinum Nanoparticles with Different Bimetallic Compositions , 2005 .

[36]  Peter N. Njoki,et al.  Electrocatalytic reduction of oxygen: Gold and gold-platinum nanoparticle catalysts prepared by two-phase protocol , 2004 .

[37]  M. Miki-Yoshida,et al.  Surface reconstruction and decahedral structure of bimetallic nanoparticles. , 2004, Physical review letters.

[38]  A. Sra,et al.  Synthesis of atomically ordered AuCu and AuCu(3) nanocrystals from bimetallic nanoparticle precursors. , 2004, Journal of the American Chemical Society.

[39]  K. Koga,et al.  Size- and temperature-dependent structural transitions in gold nanoparticles. , 2004, Physical review letters.

[40]  Zengyuan Guo,et al.  Thermophysical properties of undercooled liquid Au-Cu alloys from molecular dynamics simulations , 2004 .

[41]  M. José-Yacamán,et al.  Molecular dynamics study of bimetallic nanoparticles: the case of AuxCuy alloy clusters , 2003 .

[42]  Takeshi Egami,et al.  Underneath the Bragg Peaks , 2003 .

[43]  Roy L. Johnston,et al.  Theoretical study of Cu–Au nanoalloy clusters using a genetic algorithm , 2002 .

[44]  M. Maye,et al.  Heating-Induced Evolution of Thiolate-Encapsulated Gold Nanoparticles: A Strategy for Size and Shape Manipulations , 2000 .

[45]  R. Murray,et al.  Stable, monolayer-protected metal alloy clusters [18] , 1998 .

[46]  S. Valkealahti,et al.  SIZE-DEPENDENT ICOSAHEDRAL-TO-FCC STRUCTURE CHANGE CONFIRMED IN UNSUPPORTED NANOMETER-SIZED COPPER CLUSTERS , 1997 .

[47]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .

[48]  Valeri Petkov,et al.  RAD, a program for analysis of X‐ray diffraction data from amorphous materials for personal computers , 1989 .

[49]  P. Buffat,et al.  Size effect on the melting temperature of gold particles , 1976 .