Characterizing Entropy in Statistical Physics and in Quantum Information Theory
暂无分享,去创建一个
[1] Janet Anders,et al. Landauer's principle in the quantum domain , 2010, DCM.
[2] R. Renner,et al. Inadequacy of von Neumann entropy for characterizing extractable work , 2009, 0908.0424.
[3] Herrmann. Vorlesungen über die Theorie der Wärmestrahlung. Von Dr. Max Planck. Fünfte, abermals umgearb. Aufl. Leipzig 1923. Verlag J. A. Barth , 1924 .
[4] J. Åberg. Truly work-like work extraction via a single-shot analysis , 2011, Nature Communications.
[5] Elliott H. Lieb,et al. The Mathematical Structure of the Second Law of Thermodynamics , 2001 .
[6] W. Ochs. A new axiomatic characterization of the von Neumann entropy , 1975 .
[7] J. Neumann. Mathematische grundlagen der Quantenmechanik , 1935 .
[8] C. cohen-tannoudji,et al. Advances in Atomic Physics: An Overview , 2011 .
[9] R. Bhatia. Matrix Analysis , 1996 .
[10] Friedrich Hasenöhrl,et al. Wissenschaftliche Abhandlungen: Über die Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung resp. den Sätzen über das Wärmegleichgewicht , 2012 .
[11] Renato Renner,et al. Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.
[12] M. Tomamichel. A framework for non-asymptotic quantum information theory , 2012, 1203.2142.
[13] A. Wehrl. How chaotic is a state of a quantum system , 1973 .
[14] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[15] M. Planck. Vorlesungen über die Theorie der Wärmestrahlung , 1906 .
[16] C. T. Ng,et al. Why the Shannon and Hartley entropies are ‘natural’ , 1974, Advances in Applied Probability.
[17] Marco Tomamichel,et al. A Fully Quantum Asymptotic Equipartition Property , 2008, IEEE Transactions on Information Theory.
[18] A. Wehrl. General properties of entropy , 1978 .
[19] R. Renner,et al. Generalized Entropies , 2012, 1211.3141.
[20] E. Lieb,et al. The physics and mathematics of the second law of thermodynamics (Physics Reports 310 (1999) 1–96)☆ , 1997, cond-mat/9708200.
[21] Elliott H. Lieb,et al. A Fresh Look at Entropy and the Second Law of Thermodynamics , 2000 .
[22] I. Chuang,et al. Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .
[23] Leo Szilard,et al. Über die Ausdehnung der phänomenologischen Thermodynamik auf die Schwankungserscheinungen , 1925 .
[24] A. J. Short,et al. Entanglement and the foundations of statistical mechanics , 2005 .
[25] Friedrich Hasenöhrl,et al. Analytischer Beweis des zweiten Hauptsatzes der mechanischen Wärmetheorie aus den Sätzen über das Gleichgewicht der lebendigen Kraft , 2012 .
[26] E. Lieb,et al. A Guide to Entropy and the Second Law of Thermodynamics , 1998, math-ph/9805005.
[27] O. Bratteli. Operator Algebras And Quantum Statistical Mechanics , 1979 .
[28] M. Planck. Ueber das Gesetz der Energieverteilung im Normalspectrum , 1901 .
[29] R. Renner,et al. Inadequacy of von Neumann entropy for characterizing extractable work , 2011 .
[30] W. Thirring,et al. The Boltzmann Equation , 1973 .
[31] R. Ingarden,et al. Information Dynamics and Open Systems: Classical and Quantum Approach , 1997 .
[32] M. Ruskai. Inequalities for quantum entropy: A review with conditions for equality , 2002, quant-ph/0205064.
[33] M. Klein,et al. The Development of Boltzmann’s Statistical Ideas , 1973 .
[34] Masahito Hayashi,et al. An Information-Spectrum Approach to Classical and Quantum Hypothesis Testing for Simple Hypotheses , 2007, IEEE Transactions on Information Theory.
[35] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .