Characterizing Entropy in Statistical Physics and in Quantum Information Theory

A new axiomatic characterization with a minimum of conditions for entropy as a function on the set of states in quantum mechanics is presented. Traditionally unspoken assumptions are unveiled and replaced by proven consequences of the axioms. First the Boltzmann–Planck formula is derived. Building on this formula, using the Law of Large Numbers—a basic theorem of probability theory—the von Neumann formula is deduced. Axioms used in older theories on the foundations are now derived facts.

[1]  Janet Anders,et al.  Landauer's principle in the quantum domain , 2010, DCM.

[2]  R. Renner,et al.  Inadequacy of von Neumann entropy for characterizing extractable work , 2009, 0908.0424.

[3]  Herrmann Vorlesungen über die Theorie der Wärmestrahlung. Von Dr. Max Planck. Fünfte, abermals umgearb. Aufl. Leipzig 1923. Verlag J. A. Barth , 1924 .

[4]  J. Åberg Truly work-like work extraction via a single-shot analysis , 2011, Nature Communications.

[5]  Elliott H. Lieb,et al.  The Mathematical Structure of the Second Law of Thermodynamics , 2001 .

[6]  W. Ochs A new axiomatic characterization of the von Neumann entropy , 1975 .

[7]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .

[8]  C. cohen-tannoudji,et al.  Advances in Atomic Physics: An Overview , 2011 .

[9]  R. Bhatia Matrix Analysis , 1996 .

[10]  Friedrich Hasenöhrl,et al.  Wissenschaftliche Abhandlungen: Über die Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung resp. den Sätzen über das Wärmegleichgewicht , 2012 .

[11]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[12]  M. Tomamichel A framework for non-asymptotic quantum information theory , 2012, 1203.2142.

[13]  A. Wehrl How chaotic is a state of a quantum system , 1973 .

[14]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[15]  M. Planck Vorlesungen über die Theorie der Wärmestrahlung , 1906 .

[16]  C. T. Ng,et al.  Why the Shannon and Hartley entropies are ‘natural’ , 1974, Advances in Applied Probability.

[17]  Marco Tomamichel,et al.  A Fully Quantum Asymptotic Equipartition Property , 2008, IEEE Transactions on Information Theory.

[18]  A. Wehrl General properties of entropy , 1978 .

[19]  R. Renner,et al.  Generalized Entropies , 2012, 1211.3141.

[20]  E. Lieb,et al.  The physics and mathematics of the second law of thermodynamics (Physics Reports 310 (1999) 1–96)☆ , 1997, cond-mat/9708200.

[21]  Elliott H. Lieb,et al.  A Fresh Look at Entropy and the Second Law of Thermodynamics , 2000 .

[22]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[23]  Leo Szilard,et al.  Über die Ausdehnung der phänomenologischen Thermodynamik auf die Schwankungserscheinungen , 1925 .

[24]  A. J. Short,et al.  Entanglement and the foundations of statistical mechanics , 2005 .

[25]  Friedrich Hasenöhrl,et al.  Analytischer Beweis des zweiten Hauptsatzes der mechanischen Wärmetheorie aus den Sätzen über das Gleichgewicht der lebendigen Kraft , 2012 .

[26]  E. Lieb,et al.  A Guide to Entropy and the Second Law of Thermodynamics , 1998, math-ph/9805005.

[27]  O. Bratteli Operator Algebras And Quantum Statistical Mechanics , 1979 .

[28]  M. Planck Ueber das Gesetz der Energieverteilung im Normalspectrum , 1901 .

[29]  R. Renner,et al.  Inadequacy of von Neumann entropy for characterizing extractable work , 2011 .

[30]  W. Thirring,et al.  The Boltzmann Equation , 1973 .

[31]  R. Ingarden,et al.  Information Dynamics and Open Systems: Classical and Quantum Approach , 1997 .

[32]  M. Ruskai Inequalities for quantum entropy: A review with conditions for equality , 2002, quant-ph/0205064.

[33]  M. Klein,et al.  The Development of Boltzmann’s Statistical Ideas , 1973 .

[34]  Masahito Hayashi,et al.  An Information-Spectrum Approach to Classical and Quantum Hypothesis Testing for Simple Hypotheses , 2007, IEEE Transactions on Information Theory.

[35]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .