Confidence bands for least squares support vector machine classifiers: A regression approach
暂无分享,去创建一个
Johan A. K. Suykens | Bart De Moor | Peter Karsmakers | Kris De Brabanter | Jos De Brabanter | J. Suykens | B. Moor | J. D. Brabanter | P. Karsmakers | K. D. Brabanter | K. Brabanter | J. Brabanter
[1] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[2] C. Loader,et al. Simultaneous Confidence Bands for Linear Regression and Smoothing , 1994 .
[3] Jiayang Sun. Tail probabilities of the maxima of Gaussian random fields , 1993 .
[4] Alexandre B. Tsybakov,et al. Introduction to Nonparametric Estimation , 2008, Springer series in statistics.
[5] Yaonan Wang,et al. Texture classification using the support vector machines , 2003, Pattern Recognit..
[6] Richard A. Davis,et al. On Some Global Measures of the Deviations of Density Function Estimates , 2011 .
[7] Johan A. K. Suykens,et al. Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.
[8] Jianqing Fan,et al. Local polynomial modelling and its applications , 1994 .
[9] S. Bochner. Lectures on Fourier Integrals. (AM-42) , 1959 .
[10] N. Hengartner,et al. Recursive bias estimation and L2 boosting , 2008, 0801.4629.
[11] C. Loader,et al. Robustness of Tube Formula Based Confidence Bands , 1997 .
[12] Z. Šidák. Rectangular Confidence Regions for the Means of Multivariate Normal Distributions , 1967 .
[13] Robert Tibshirani,et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.
[14] D. Ruppert. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .
[15] Giulio Sandini,et al. On-line independent support vector machines , 2010, Pattern Recognit..
[16] Adam Krzyzak,et al. A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.
[17] Guohua Pan,et al. Local Regression and Likelihood , 1999, Technometrics.
[18] L. Wasserman. All of Nonparametric Statistics , 2005 .
[19] Robert B. Abernethy,et al. The new Weibull handbook , 1993 .
[20] W. Cleveland,et al. Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting , 1988 .
[21] Johan A. K. Suykens,et al. Least Squares Support Vector Machines , 2002 .
[22] László Györfi,et al. A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.
[23] Huafu Chen,et al. Two-class support vector data description , 2011, Pattern Recognit..
[24] James Stephen Marron,et al. Regression smoothing parameters that are not far from their optimum , 1992 .
[25] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[26] Johan A. K. Suykens,et al. Approximate Confidence and Prediction Intervals for Least Squares Support Vector Regression , 2011, IEEE Transactions on Neural Networks.
[27] Bradley Efron,et al. The length heuristic for simultaneous hypothesis tests , 1997 .
[28] M. Wand. Local Regression and Likelihood , 2001 .
[29] Gerda Claeskens,et al. Simultaneous Confidence Bands for Penalized Spline Estimators , 2009 .
[30] M. Wand,et al. Semiparametric Regression: Parametric Regression , 2003 .
[31] M. C. Jones,et al. Generalized jackknifing and higher order kernels , 1993 .