Composition and Microstructure of Cobalt Oxide Thin Films Obtained from a Novel Cobalt(II) Precursor by Chemical Vapor Deposition

The present work reports the synthesis and the characterization of cobalt oxide thin films obtained by chemical vapor deposition (CVD) on indium tin oxide (ITO) substrates, using a cobalt(II) β-diketonate as precursor. The complex is characterized by electron impact mass spectrometry (EI-MS) and thermal analysis in order to investigate its decomposition pattern. The depositions are carried out in a cold wall reactor in the temperature range 350−500 °C at different oxygen pressures, to tailor film composition from CoO to Co3O4. The crystalline nanostructure is evidenced by X-ray diffraction (XRD), while the surface and in-depth chemical composition is studied by X-ray photoelectron (XPS) and X-ray excited auger electron spectroscopy (XE-AES). Atomic force microscopy (AFM) is employed to analyze the surface morphology of the films and its dependence on the synthesis conditions. Relevant results concerning the control of composition and microstructure of Co−O thin films are presented and discussed.