InSight Constraints on the Global Character of the Martian Crust

Analyses of seismic data from the InSight mission have provided the first in situ constraints on the thickness of the crust of Mars. These crustal thickness constraints are currently limited to beneath the lander that is located in the northern lowlands, and we use gravity and topography data to construct global crustal thickness models that satisfy the seismic data. These models consider a range of possible mantle and core density profiles, a range of crustal densities, a low‐density surface layer, and the possibility that the crustal density of the northern lowlands is greater than that of the southern highlands. Using the preferred InSight three‐layer seismic model of the crust, the average crustal thickness of the planet is found to lie between 30 and 72 km. Depending on the choice of the upper mantle density, the maximum permissible density of the northern lowlands and southern highlands crust is constrained to be between 2,850 and 3,100 kg m−3. These crustal densities are lower than typical Martian basaltic materials and are consistent with a crust that is on average more felsic than the materials found at the surface. We argue that a substantial portion of the crust of Mars is a primary crust that formed during the initial differentiation of the planet. Various hypotheses for the origin of the observed intracrustal seisimic layers are assessed, with our preferred interpretation including thick volcanic deposits, ejecta from the Utopia basin, porosity closure, and differentiation products of a Borealis impact melt sheet.

[1]  J. Clinton,et al.  Seismology on Mars: An analysis of 1 direct, reected, and converted seismic body waves with implications for interior structure , 2022, Physics of the Earth and Planetary Interiors.

[2]  A. Rivoldini,et al.  Geophysical and cosmochemical evidence for a volatile-rich Mars , 2022, Earth and Planetary Science Letters.

[3]  S. McLennan Composition of planetary crusts and planetary differentiation , 2022, Planetary Volcanism Across the Solar System.

[4]  M. Golombek,et al.  The shallow structure of Mars at the InSight landing site from inversion of ambient vibrations , 2021, Nature Communications.

[5]  W. Banerdt,et al.  Energy Envelope and Attenuation Characteristics of High-Frequency (HF) and Very-High-Frequency (VF) Martian Events , 2021, Bulletin of the Seismological Society of America.

[6]  W. Banerdt,et al.  Improving Constraints on Planetary Interiors With PPs Receiver Functions , 2021, Journal of geophysical research. Planets.

[7]  D. Giardini,et al.  Scattering Attenuation of the Martian Interior through Coda Wave Analysis. , 2021, The bulletin of the Seismological Society of America : BSSA.

[8]  Raphaël F. Garcia,et al.  Potential Pitfalls in the Analysis and Structural Interpretation of Seismic Data from the Mars InSight Mission. , 2021, The bulletin of the Seismological Society of America : BSSA.

[9]  V. Sautter,et al.  Alkali magmatism on Mars: an unexpected diversity , 2021, Comptes Rendus. Géoscience.

[10]  M. Wieczorek,et al.  Depth of Martian Magnetization From Localized Power Spectrum Analysis , 2021, Journal of Geophysical Research: Planets.

[11]  M. Wieczorek,et al.  The Composition of the South Polar Cap of Mars Derived From Orbital Data , 2021, Journal of Geophysical Research: Planets.

[12]  W. Banerdt,et al.  Seismic detection of the martian core , 2021, Science.

[13]  W. Banerdt,et al.  Thickness and structure of the martian crust from InSight seismic data , 2021, Science.

[14]  W. Banerdt,et al.  Upper mantle structure of Mars from InSight seismic data , 2021, Science.

[15]  T. Glotch,et al.  Infrared Spectral Evidence for K‐Metasomatism of Volcanic Rocks on Mars , 2021, Geophysical Research Letters.

[16]  W. Folkner,et al.  Mars precession rate determined from radiometric tracking of the InSight Lander , 2021 .

[17]  M. Manga,et al.  No Cryosphere‐Confined Aquifer Below InSight on Mars , 2021, Geophysical Research Letters.

[18]  W. Banerdt,et al.  First Focal Mechanisms of Marsquakes , 2021, Journal of Geophysical Research: Planets.

[19]  S. Smrekar,et al.  Martian Mantle Heat Flow Estimate From the Lack of Lithospheric Flexure in the South Pole of Mars: Implications for Planetary Evolution and Basal Melting , 2020, Geophysical Research Letters.

[20]  A. Konopliv,et al.  Detection of the Chandler Wobble of Mars From Orbiting Spacecraft , 2020, Geophysical Research Letters.

[21]  A. Plesa,et al.  Constraints on Thermal History of Mars From Depth of Pore Closure Below InSight , 2020, Geophysical Research Letters.

[22]  What Martian Meteorites Reveal About the Interior and Surface of Mars , 2020, Journal of Geophysical Research: Planets.

[23]  R. Phillips,et al.  Timing of the martian dynamo: New constraints for a core field 4.5 and 3.7 Ga ago , 2020, Science Advances.

[24]  M. Wieczorek,et al.  Crustal Porosity of Lunar Impact Basins , 2020, Journal of Geophysical Research: Planets.

[25]  M. Wieczorek,et al.  Flexure of the Lithosphere Beneath the North Polar Cap of Mars: Implications for Ice Composition and Heat Flow , 2020, Geophysical Research Letters.

[26]  M. Golombek,et al.  Crust stratigraphy and heterogeneities of the first kilometers at the dichotomy boundary in western Elysium Planitia and implications for InSight lander , 2020, Icarus.

[27]  Jeroen Tromp,et al.  Initial results from the InSight mission on Mars , 2020, Nature Geoscience.

[28]  C. Russell,et al.  Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data , 2020, Nature Geoscience.

[29]  S. Kedar,et al.  The seismicity of Mars , 2020, Nature Geoscience.

[30]  K. Lewis,et al.  Depletion of Heat Producing Elements in the Martian Mantle , 2019, Geophysical Research Letters.

[31]  M. Zuber,et al.  Variations in Martian Lithospheric Strength Based on Gravity/Topography Analysis , 2019, Journal of Geophysical Research: Planets.

[32]  M. Heap P- and S-wave velocity of dry, water-saturated, and frozen basalt: Implications for the interpretation of Martian seismic data , 2019, Icarus.

[33]  J. Morgan,et al.  Impact‐Induced Porosity and Microfracturing at the Chicxulub Impact Structure , 2019, Journal of Geophysical Research: Planets.

[34]  J. Goff,et al.  Synthesis of Oceanic Crustal Structure From Two‐Dimensional Seismic Profiles , 2019, Reviews of Geophysics.

[35]  A. Rivoldini,et al.  Hydrostatic Interfaces in Bodies With Nonhydrostatic Lithospheres , 2019, Journal of Geophysical Research: Planets.

[36]  Clara Moskowitz Mars , 2019, The Solace Is Not the Lullaby.

[37]  A. Vasavada,et al.  A surface gravity traverse on Mars indicates low bedrock density at Gale crater , 2019, Science.

[38]  Huafeng Liu,et al.  SEIS: Insight’s Seismic Experiment for Internal Structure of Mars , 2019, Space Science Reviews.

[39]  M. Wieczorek,et al.  The Gravitational Signature of Martian Volcanoes , 2018, Journal of Geophysical Research: Planets.

[40]  M. Golombek,et al.  Pre-mission InSights on the Interior of Mars , 2019, Space Science Reviews.

[41]  W. Banerdt,et al.  The Thermal State and Interior Structure of Mars , 2018, Geophysical Research Letters.

[42]  C. Agee,et al.  A complex history of silicate differentiation of Mars from Nd and Hf isotopes in crustal breccia NWA 7034 , 2018, Earth and Planetary Science Letters.

[43]  Sami W. Asmar,et al.  The Rotation and Interior Structure Experiment on the InSight Mission to Mars , 2018, Space Science Reviews.

[44]  A. Trebi-Ollennu,et al.  Geology and Physical Properties Investigations by the InSight Lander , 2018, Space Science Reviews.

[45]  K. Lewis,et al.  The Density of the Medusae Fossae Formation: Implications for its Composition, Origin, and Importance in Martian History , 2018, Journal of Geophysical Research: Planets.

[46]  H. McSween,et al.  Formation of Evolved Rocks at Gale Crater by Crystal Fractionation and Implications for Mars Crustal Composition , 2018, Journal of Geophysical Research: Planets.

[47]  J. Snape,et al.  Evidence for extremely rapid magma ocean crystallization and crust formation on Mars , 2018, Nature.

[48]  A. Plesa,et al.  Hemispheric Dichotomy in Lithosphere Thickness on Mars Caused by Differences in Crustal Structure and Composition , 2018 .

[49]  M. Wieczorek,et al.  SHTools: Tools for Working with Spherical Harmonics , 2018, Geochemistry, Geophysics, Geosystems.

[50]  S. Marchi,et al.  Differentiation in impact melt sheets as a mechanism to produce evolved magmas on Mars , 2017 .

[51]  A. Rivoldini,et al.  A Geophysical Perspective on the Bulk Composition of Mars , 2017 .

[52]  K. Gwinner,et al.  Selection of the InSight Landing Site , 2017 .

[53]  C. Agee,et al.  The early differentiation of Mars inferred from Hf–W chronometry , 2017 .

[54]  R. Wiens,et al.  Basalt–trachybasalt samples in Gale Crater, Mars , 2017 .

[55]  G. Neumann,et al.  Evidence for a low bulk crustal density for Mars from gravity and topography , 2017, Geophysical research letters.

[56]  W. Bottke,et al.  A post-accretionary lull in large impacts on early Mars , 2017 .

[57]  R. Kirk,et al.  Near Surface Stratigraphy and Regolith Production in Southwestern Elysium Planitia, Mars: Implications for Hesperian-Amazonian Terrains and the InSight Lander Mission , 2017 .

[58]  J. Ruiz,et al.  Present-day heat flow model of Mars , 2017, Scientific Reports.

[59]  Roger C. Wiens,et al.  Classification of igneous rocks analyzed by ChemCam at Gale crater, Mars , 2017 .

[60]  G. Domokos,et al.  Geologic history of Martian regolith breccia Northwest Africa 7034: Evidence for hydrothermal activity and lithologic diversity in the Martian crust , 2016 .

[61]  David Mimoun,et al.  Single-station and single-event marsquake location and inversion for structure using synthetic Martian waveforms , 2016 .

[62]  Frank G. Lemoine,et al.  Seasonal and static Gravity Field of Mars from MGS, Mars Odyssey and MRO Radio Science , 2016 .

[63]  N. Bridges,et al.  Magmatic complexity on early Mars as seen through a combination of orbital, in-situ and meteorite data , 2016 .

[64]  T. Spohn,et al.  How large are present‐day heat flux variations across the surface of Mars? , 2016 .

[65]  F. McCubbin,et al.  Rb‐Sr and Sm‐Nd isotopic and REE studies of igneous components in the bulk matrix domain of Martian breccia Northwest Africa 7034 , 2016 .

[66]  J. Filiberto GEOCHEMISTRY OF MARTIAN BASALTS WITH CONSTRAINTS ON MAGMA GENESIS , 2017 .

[67]  R. Wiens,et al.  The Petrochemistry of Jake_M , 2016 .

[68]  H. J. Melosh,et al.  Preimpact porosity controls the gravity signature of lunar craters , 2015 .

[69]  C. Federico,et al.  Impact and admittance modeling of the Isidis Planitia, Mars , 2015 .

[70]  Shuanggen Jin,et al.  Martian sub-crustal stress from gravity and topographic models , 2015 .

[71]  Patrick Pinet,et al.  In situ evidence for continental crust on early Mars , 2015 .

[72]  F. McCubbin,et al.  Petrology of igneous clasts in Northwest Africa 7034: Implications for the petrologic diversity of the martian crust , 2015 .

[73]  A. D. Rogers,et al.  Feldspathic rocks on Mars: Compositional constraints from infrared spectroscopy and possible formation mechanisms , 2015 .

[74]  A. D. Rogers,et al.  Thermal and near‐infrared analyses of central peaks of Martian impact craters: Evidence for a heterogeneous Martian crust , 2015 .

[75]  M. Meijde,et al.  Uncertainties in crustal thickness models for data sparse environments: A review for South America and Africa , 2015 .

[76]  W. Banerdt,et al.  Verifying single-station seismic approaches using Earth-based data: Preparation for data return from the InSight mission to Mars , 2015 .

[77]  M. Whitehouse,et al.  Pb-isotopic evidence for an early, enriched crust on Mars , 2015 .

[78]  M. Wieczorek,et al.  Gravity and Topography of the Terrestrial Planets , 2015 .

[79]  David E. Smith,et al.  Excavation of the lunar mantle by basin-forming impact events on the Moon , 2015 .

[80]  David E. Smith,et al.  GRAIL gravity constraints on the vertical and lateral density structure of the lunar crust , 2014 .

[81]  M. Wieczorek,et al.  Petrological constraints on the density of the Martian crust , 2014 .

[82]  B. Ehlmann,et al.  Mineralogy of the Martian Surface , 2014 .

[83]  Geophysical evidence supports migration of Tharsis volcanism on Mars , 2014 .

[84]  James W. Head,et al.  Impact melt differentiation in the South Pole-Aitken basin: Some observations and speculations , 2014 .

[85]  D. Ming,et al.  Geochemical diversity in first rocks examined by the Curiosity Rover in Gale Crater: Evidence for and significance of an alkali and volatile‐rich igneous source , 2014 .

[86]  F. Poulet,et al.  Ancient plutonic processes on Mars inferred from the detection of possible anorthositic terrains , 2013 .

[87]  Scott L. Murchie,et al.  Prolonged magmatic activity on Mars inferred from the detection of felsic rocks , 2013 .

[88]  M. Humayun,et al.  Origin and age of the earliest Martian crust from meteorite NWA 7533 , 2013, Nature.

[89]  Lionel Wilson,et al.  Geology and petrology of enormous volumes of impact melt on the Moon: A case study of the Orientale basin impact melt sea , 2013 .

[90]  R. Wiens,et al.  The Petrochemistry of Jake_M: A Martian Mugearite , 2013, Science.

[91]  V. Sautter,et al.  The petrological expression of early Mars volcanism , 2013 .

[92]  Sami W. Asmar,et al.  The Crust of the Moon as Seen by GRAIL , 2012, Science.

[93]  R. Citron,et al.  Constraints on the formation of the Martian crustal dichotomy from remnant crustal magnetism , 2012 .

[94]  M. Bizzarro,et al.  The Absolute Chronology and Thermal Processing of Solids in the Solar Protoplanetary Disk , 2012, Science.

[95]  J. Bandfield,et al.  Geology of quartz and hydrated silica‐bearing deposits near Antoniadi Crater, Mars , 2012 .

[96]  V. Dehant,et al.  Density and lithospheric thickness of the Tharsis Province from MEX MaRS and MRO gravity data , 2012 .

[97]  M. A. Ivanov,et al.  Major episodes of geologic history of Isidis Planitia on Mars , 2012 .

[98]  David E. Smith,et al.  Thickness of proximal ejecta from the Orientale Basin from Lunar Orbiter Laser Altimeter (LOLA) data: Implications for multi‐ring basin formation , 2011 .

[99]  S. McLennan,et al.  Martian surface heat production and crustal heat flow from Mars Odyssey Gamma‐Ray spectrometry , 2011 .

[100]  Véronique Dehant,et al.  Geodesy constraints on the interior structure and composition of Mars , 2011 .

[101]  A. Pourmand,et al.  Hf–W–Th evidence for rapid growth of Mars and its status as a planetary embryo , 2011, Nature.

[102]  O. Gasnault,et al.  Thermal history of Mars inferred from orbital geochemistry of volcanic provinces , 2011, Nature.

[103]  O. Aharonson,et al.  Geophysical consequences of planetary-scale impacts into a Mars-like planet , 2011 .

[104]  J. Grimwood,et al.  A Younger Age for ALH84001 and Its Geochemical Link to Shergottite Sources in Mars , 2010, Science.

[105]  P. Shearer,et al.  Resolving crustal thickness using SS waveform stacks , 2010 .

[106]  G. J. Consolmagnoa,et al.  The significance of meteorite density and porosity , 2010 .

[107]  S. Hauck,,et al.  Lithospheric structure and tectonics at Isidis Planitia, Mars , 2009 .

[108]  Harry Y. McSween,et al.  Elemental Composition of the Martian Crust , 2009, Science.

[109]  J. Mustard,et al.  Quantitative compositional analysis of martian mafic regions using the MEx/OMEGA reflectance data 1. Methodology, uncertainties and examples of application , 2009 .

[110]  Jean-Pierre Bibring,et al.  Quantitative compositional analysis of martian mafic regions using the MEx/OMEGA reflectance data. 2. Petrological implications , 2009 .

[111]  John F. Mustard,et al.  Identification of hydrated silicate minerals on Mars using MRO‐CRISM: Geologic context near Nili Fossae and implications for aqueous alteration , 2009 .

[112]  S. Taylor,et al.  Planetary Crusts: Their Composition, Origin and Evolution , 2009 .

[113]  Doris Breuer,et al.  Constraints on the maximum crustal density from gravity–topography modeling: Applications to the southern highlands of Mars , 2008 .

[114]  F. McCubbin,et al.  Compositional diversity and stratification of the Martian crust: Inferences from crystallization experiments on the picrobasalt Humphrey from Gusev Crater, Mars , 2008 .

[115]  O. Aharonson,et al.  Mega-impact formation of the Mars hemispheric dichotomy , 2008, Nature.

[116]  F. Nimmo,et al.  Implications of an impact origin for the martian hemispheric dichotomy , 2008, Nature.

[117]  M. Zuber,et al.  The Borealis basin and the origin of the martian crustal dichotomy , 2008, Nature.

[118]  S. Werner The early martian evolution—Constraints from basin formation ages , 2008 .

[119]  C. Sotin,et al.  Serpentinization of the martian crust during Noachian , 2008 .

[120]  Richard D. Starr,et al.  Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars , 2007 .

[121]  V. Debaille,et al.  Coupled 142Nd–143Nd evidence for a protracted magma ocean in Mars , 2007, Nature.

[122]  Richard D. Starr,et al.  Bulk composition and early differentiation of Mars , 2007 .

[123]  R. Phillips,et al.  Utopia and Hellas basins, Mars : Twins separated at birth , 2006 .

[124]  M. Wieczorek,et al.  Lateral variations of lunar crustal thickness from the Apollo seismic data set , 2006 .

[125]  D. Dunlop,et al.  Magnetic minerals in the Martian crust , 2005 .

[126]  M. Drake,et al.  A review of meteorite evidence for the timing of magmatism and of surface or near-surface liquid water on Mars , 2005 .

[127]  S. Smrekar,et al.  Relaxation of the Martian dichotomy boundary: Faulting in the Ismenius Region and constraints on the early evolution of Mars , 2005 .

[128]  Tilman Spohn,et al.  Geophysical constraints on the composition and structure of the Martian interior , 2005 .

[129]  P. C. Hess,et al.  Possible formation of ancient crust on Mars through magma ocean processes , 2005 .

[130]  P. Lognonné,et al.  Constraints on the Martian lithosphere from gravity and topography data and implication for volcanism and possible mantle heterogeneities , 2005 .

[131]  M. Malin,et al.  Evidence for magmatic evolution and diversity on Mars from infrared observations , 2005, Nature.

[132]  Y. Langevin,et al.  Olivine and Pyroxene Diversity in the Crust of Mars , 2005, Science.

[133]  David E. Smith,et al.  Correction to “Localized gravity/topography admittance and correlation spectra on Mars: Implications for regional and global evolution” , 2004 .

[134]  Maria T. Zuber,et al.  Thickness of the Martian crust: Improved constraints from geoid-to-topography ratios , 2004 .

[135]  David E. Smith,et al.  Crustal structure of Mars from gravity and topography , 2004 .

[136]  R. Clayton,et al.  Final chemical results from the Mars Pathfinder alpha proton X-ray spectrometer , 2003 .

[137]  Rudolf Rieder,et al.  Refined data of Alpha Proton X-ray Spectrometer analyses of soils and rocks at the Mars Pathfinder site: Implications for surface chemistry , 2003 .

[138]  Linda T. Elkins-Tanton,et al.  Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: Implications for Mars , 2003 .

[139]  S. McLennan Large‐ion lithophile element fractionation during the early differentiation of Mars and the composition of the martian primitive mantle , 2003 .

[140]  Sean C. Solomon,et al.  Localized gravity/topography admittance and correlation spectra on Mars: Implications for regional and global evolution , 2002 .

[141]  H. Melosh,et al.  Martian Meteorite Launch: High-Speed Ejecta from Small Craters , 2002, Science.

[142]  F. Nimmo Admittance estimates of mean crustal thickness and density at the Martian hemispheric dichotomy , 2002 .

[143]  A. B. WATTS,et al.  Isostasy and Flexure of the Lithosphere , 2001 .

[144]  F. Nimmo,et al.  Estimates of Martian crustal thickness from viscous relaxation of topography , 2001 .

[145]  S. McLennan Crustal heat production and the thermal evolution of Mars , 2001 .

[146]  J W Head,et al.  Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. , 2000, Science.

[147]  A. Babeyko,et al.  Martian crust: a modeling approach , 2000 .

[148]  M. Norman The composition and thickness of the crust of Mars estimated from rare earth elements and neodymium‐isotopic compositions of Martian meteorites , 1999 .

[149]  Roger J. Phillips,et al.  Potential anomalies on a sphere: Applications to the thickness of the lunar crust , 1998 .

[150]  P. Spudis The Geology of Multi-ring Impact Basins , 2005 .

[151]  B. Mosser,et al.  Planetary seismology , 1993 .

[152]  J. Arkani‐Hamed,et al.  The effects of serpentinization on density and magnetic susceptibility : a petrophysical model , 1990 .

[153]  D. L. Anderson,et al.  Martian wind activity detected by a seismometer at Viking Lander 2 site , 1979 .

[154]  Don L. Anderson,et al.  Seismology on Mars , 1977 .

[155]  J. B. Moody Serpentinization: a review , 1976 .

[156]  D. H. Scott,et al.  Geologic map of Mars , 1976 .

[157]  B. Martin,et al.  Some experimental and theoretical observations on the kinetics of hydration reactions with particular reference to serpentinization , 1970 .