Data re-uploading for a universal quantum classifier

A single qubit provides sufficient computational capabilities to construct a universal quantum classifier when assisted with a classical subroutine. This fact may be surprising since a single qubit only offers a simple superposition of two states and single-qubit gates only make a rotation in the Bloch sphere. The key ingredient to circumvent these limitations is to allow for multiple data re-uploading. A quantum circuit can then be organized as a series of data re-uploading and single-qubit processing units. Furthermore, both data re-uploading and measurements can accommodate multiple dimensions in the input and several categories in the output, to conform to a universal quantum classifier. The extension of this idea to several qubits enhances the efficiency of the strategy as entanglement expands the superpositions carried along with the classification. Extensive benchmarking on different examples of the single- and multi-qubit quantum classifier validates its ability to describe and classify complex data.

[1]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[2]  Robert Gardner,et al.  Quantum generalisation of feedforward neural networks , 2016, npj Quantum Information.

[3]  Keisuke Fujii,et al.  Quantum circuit learning , 2018, Physical Review A.

[4]  Jacob biamonte,et al.  Quantum machine learning , 2016, Nature.

[5]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[6]  Maria Schuld,et al.  The quest for a Quantum Neural Network , 2014, Quantum Information Processing.

[7]  J. Billingsley Mathematics for Control , 2005 .

[8]  Seth Lloyd,et al.  Quantum algorithm for data fitting. , 2012, Physical review letters.

[9]  M. Schuld,et al.  Circuit-centric quantum classifiers , 2018, Physical Review A.

[10]  J. McClean,et al.  Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz , 2017, Quantum Science and Technology.

[11]  E. Torrontegui,et al.  Unitary quantum perceptron as efficient universal approximator , 2018, EPL (Europhysics Letters).

[12]  Jaspreet S. Oberoi,et al.  The Power of One Qubit in Machine Learning. , 2019, 1905.01390.

[13]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[14]  R. Carter Lie Groups , 1970, Nature.

[15]  Dirk Oliver Theis,et al.  Input Redundancy for Parameterized Quantum Circuits , 2019, Frontiers in Physics.

[16]  Ijaz Ahmed Physics Review Letters , 2014 .

[17]  Maria Schuld,et al.  Quantum Machine Learning in Feature Hilbert Spaces. , 2018, Physical review letters.

[18]  Masoud Mohseni,et al.  Quantum support vector machine for big feature and big data classification , 2013, Physical review letters.

[19]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[20]  Kristan Temme,et al.  Supervised learning with quantum-enhanced feature spaces , 2018, Nature.

[21]  Seth Lloyd,et al.  Quantum random access memory. , 2007, Physical review letters.

[22]  Charu C. Aggarwal,et al.  Neural Networks and Deep Learning , 2018, Springer International Publishing.

[23]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[24]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[25]  Hartmut Neven,et al.  Classification with Quantum Neural Networks on Near Term Processors , 2018, 1802.06002.