The identification of model effective dimensions using global sensitivity analysis
暂无分享,去创建一个
Nilay Shah | Balazs Feil | Sergei S. Kucherenko | Wolfgang Mauntz | N. Shah | S. Kucherenko | Balazs Feil | Wolfgang Mauntz
[1] E. E. Myshetskaya,et al. The average dimension of a multidimensional function for quasi-Monte Carlo estimates of an integral , 2006 .
[2] Harald Niederreiter,et al. Implementation and tests of low-discrepancy sequences , 1992, TOMC.
[3] Anargyros Papageorgiou,et al. Faster Evaluation of Multidimensional Integrals , 2000, ArXiv.
[4] Anargyros Papageorgiou,et al. The Brownian Bridge Does Not Offer a Consistent Advantage in Quasi-Monte Carlo Integration , 2002, J. Complex..
[5] Joseph F. Traub,et al. Faster Valuation of Financial Derivatives , 1995 .
[6] Russel E. Caflisch,et al. Quasi-Random Sequences and Their Discrepancies , 1994, SIAM J. Sci. Comput..
[7] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[8] R. Caflisch,et al. Quasi-Monte Carlo integration , 1995 .
[9] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[10] S. Rozin,et al. On quasirandom sequences for numerical computations , 1989 .
[11] N. Metropolis,et al. The Monte Carlo method. , 1949 .
[12] I. Sobol. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .
[13] R. Caflisch,et al. Smoothness and dimension reduction in Quasi-Monte Carlo methods , 1996 .
[14] B. Keister,et al. Multidimensional Quadrature Algorithms at Higher Degree and/or Dimension , 1996 .
[15] I. Sobol,et al. About the use of rank transformation in sensitivity analysis of model output , 1995 .
[16] I. Sobol,et al. Global sensitivity indices for nonlinear mathematical models. Review , 2005 .
[17] Ilya M. Sobol,et al. Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .
[18] E. Borgonovo. Measuring Uncertainty Importance: Investigation and Comparison of Alternative Approaches , 2006, Risk analysis : an official publication of the Society for Risk Analysis.
[19] A. Saltelli,et al. Importance measures in global sensitivity analysis of nonlinear models , 1996 .
[20] W. Hoeffding. A Class of Statistics with Asymptotically Normal Distribution , 1948 .
[21] A. Owen,et al. Quasi-Regression and the Relative Importance of the ANOVA Components of a Function , 2002 .
[22] I. Sobol. Global Sensitivity Indices for Nonlinear Mathematical Models , 2004 .
[23] I. Sobol,et al. On quasi-Monte Carlo integrations , 1998 .
[24] Emanuele Borgonovo,et al. A new uncertainty importance measure , 2007, Reliab. Eng. Syst. Saf..
[25] L. M. Weiner,et al. On the Computation of Definite Integrals , 1954 .
[26] D. Hunter. Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 2000 .
[27] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[28] Michael S. Eldred,et al. Global Sensitivity Analysis , 2010, Leaf Optical Properties.
[29] Paul Bratley,et al. Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.
[30] A. Saltelli,et al. Making best use of model evaluations to compute sensitivity indices , 2002 .
[31] A. Owen. THE DIMENSION DISTRIBUTION AND QUADRATURE TEST FUNCTIONS , 2003 .
[32] C. Schlier,et al. Error trends in Quasi-Monte Carlo integration , 2004 .
[33] Paola Annoni,et al. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index , 2010, Comput. Phys. Commun..
[34] Stefano Tarantola,et al. Estimating the approximation error when fixing unessential factors in global sensitivity analysis , 2007, Reliab. Eng. Syst. Saf..