The identification of model effective dimensions using global sensitivity analysis

It is shown that the effective dimensions can be estimated at reasonable computational costs using variance based global sensitivity analysis. Namely, the effective dimension in the truncation sense can be found by using the Sobol' sensitivity indices for subsets of variables. The effective dimension in the superposition sense can be estimated by using the first order effects and the total Sobol' sensitivity indices. The classification of some important classes of integrable functions based on their effective dimension is proposed. It is shown that it can be used for the prediction of the QMC efficiency. Results of numerical tests verify the prediction of the developed techniques.

[1]  E. E. Myshetskaya,et al.  The average dimension of a multidimensional function for quasi-Monte Carlo estimates of an integral , 2006 .

[2]  Harald Niederreiter,et al.  Implementation and tests of low-discrepancy sequences , 1992, TOMC.

[3]  Anargyros Papageorgiou,et al.  Faster Evaluation of Multidimensional Integrals , 2000, ArXiv.

[4]  Anargyros Papageorgiou,et al.  The Brownian Bridge Does Not Offer a Consistent Advantage in Quasi-Monte Carlo Integration , 2002, J. Complex..

[5]  Joseph F. Traub,et al.  Faster Valuation of Financial Derivatives , 1995 .

[6]  Russel E. Caflisch,et al.  Quasi-Random Sequences and Their Discrepancies , 1994, SIAM J. Sci. Comput..

[7]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[8]  R. Caflisch,et al.  Quasi-Monte Carlo integration , 1995 .

[9]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[10]  S. Rozin,et al.  On quasirandom sequences for numerical computations , 1989 .

[11]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[12]  I. Sobol Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[13]  R. Caflisch,et al.  Smoothness and dimension reduction in Quasi-Monte Carlo methods , 1996 .

[14]  B. Keister,et al.  Multidimensional Quadrature Algorithms at Higher Degree and/or Dimension , 1996 .

[15]  I. Sobol,et al.  About the use of rank transformation in sensitivity analysis of model output , 1995 .

[16]  I. Sobol,et al.  Global sensitivity indices for nonlinear mathematical models. Review , 2005 .

[17]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[18]  E. Borgonovo Measuring Uncertainty Importance: Investigation and Comparison of Alternative Approaches , 2006, Risk analysis : an official publication of the Society for Risk Analysis.

[19]  A. Saltelli,et al.  Importance measures in global sensitivity analysis of nonlinear models , 1996 .

[20]  W. Hoeffding A Class of Statistics with Asymptotically Normal Distribution , 1948 .

[21]  A. Owen,et al.  Quasi-Regression and the Relative Importance of the ANOVA Components of a Function , 2002 .

[22]  I. Sobol Global Sensitivity Indices for Nonlinear Mathematical Models , 2004 .

[23]  I. Sobol,et al.  On quasi-Monte Carlo integrations , 1998 .

[24]  Emanuele Borgonovo,et al.  A new uncertainty importance measure , 2007, Reliab. Eng. Syst. Saf..

[25]  L. M. Weiner,et al.  On the Computation of Definite Integrals , 1954 .

[26]  D. Hunter Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 2000 .

[27]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[28]  Michael S. Eldred,et al.  Global Sensitivity Analysis , 2010, Leaf Optical Properties.

[29]  Paul Bratley,et al.  Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.

[30]  A. Saltelli,et al.  Making best use of model evaluations to compute sensitivity indices , 2002 .

[31]  A. Owen THE DIMENSION DISTRIBUTION AND QUADRATURE TEST FUNCTIONS , 2003 .

[32]  C. Schlier,et al.  Error trends in Quasi-Monte Carlo integration , 2004 .

[33]  Paola Annoni,et al.  Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index , 2010, Comput. Phys. Commun..

[34]  Stefano Tarantola,et al.  Estimating the approximation error when fixing unessential factors in global sensitivity analysis , 2007, Reliab. Eng. Syst. Saf..