Multilevel network data facilitate statistical inference for curved ERGMs with geometrically weighted terms

Multilevel network data provide two important benefits for ERG modeling. First, they facilitate estimation of the decay parameters in geometrically weighted terms for degree and triad distributions. Estimating decay parameters from a single network is challenging, so in practice they are typically fixed rather than estimated. Multilevel network data overcome that challenge by leveraging replication. Second, such data make it possible to assess out-of-sample performance using traditional cross-validation techniques. We demonstrate these benefits by using a multilevel network sample of classroom networks from Poland. We show that estimating the decay parameters improves in-sample performance of the model and that the out-of-sample performance of our best model is strong, suggesting that our findings can be generalized to the population of interest.

[1]  Tom A. B. Snijders,et al.  A comparison of various approaches to the exponential random graph model: A reanalysis of 102 student networks in school classes , 2007, Soc. Networks.

[2]  B. Efron Defining the Curvature of a Statistical Problem (with Applications to Second Order Efficiency) , 1975 .

[3]  P. DeBenedictis The Meaning and Measurement of Frequency‐Dependent Competition , 1977 .

[4]  Pavel N Krivitsky,et al.  Computational Statistical Methods for Social Network Models , 2012, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[5]  F. Harary,et al.  STRUCTURAL BALANCE: A GENERALIZATION OF HEIDER'S THEORY1 , 1977 .

[6]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[7]  C. Butts A Relational Event Framework for Social Action , 2010 .

[8]  P. Holland,et al.  A Method for Detecting Structure in Sociometric Data , 1970, American Journal of Sociology.

[9]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[10]  Peng Wang,et al.  Closure, connectivity and degree distributions: Exponential random graph (p*) models for directed social networks , 2009, Soc. Networks.

[11]  Carter T. Butts,et al.  Bernoulli Graph Bounds for Generalrandom Graphs , 2011 .

[12]  Eric D. Kolaczyk,et al.  Statistical Analysis of Network Data: Methods and Models , 2009 .

[13]  S. Wasserman,et al.  Logit models and logistic regressions for social networks: I. An introduction to Markov graphs andp , 1996 .

[14]  Per Block,et al.  Reciprocity, transitivity, and the mysterious three-cycle , 2015, Soc. Networks.

[15]  Jonathan Stewart,et al.  Concentration and consistency results for canonical and curved exponential-family models of random graphs , 2017, 1702.01812.

[16]  Tom A. B. Snijders,et al.  The Multiple Flavours of Multilevel Issues for Networks , 2016 .

[17]  M. Schweinberger Instability, Sensitivity, and Degeneracy of Discrete Exponential Families , 2011, Journal of the American Statistical Association.

[18]  Christoph Stadtfeld,et al.  Multilevel social spaces: The network dynamics of organizational fields , 2017, Network Science.

[19]  Mark S Handcock,et al.  MODELING SOCIAL NETWORKS FROM SAMPLED DATA. , 2010, The annals of applied statistics.

[20]  Richard G. Everitt,et al.  Bayesian Parameter Estimation for Latent Markov Random Fields and Social Networks , 2012, ArXiv.

[21]  Jenine K. Harris An Introduction to Exponential Random Graph Modeling , 2013 .

[22]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[23]  Garry Robins,et al.  Analysing exponential random graph (p-star) models with missing data using Bayesian data augmentation , 2010 .

[24]  D. Hunter,et al.  Inference in Curved Exponential Family Models for Networks , 2006 .

[25]  Paola Zappa,et al.  The Analysis of Multilevel Networks in Organizations , 2015 .

[26]  Peng Wang,et al.  Exponential random graph models for multilevel networks , 2013, Soc. Networks.

[27]  Zack W. Almquist,et al.  A Flexible Parameterization for Baseline Mean Degree in Multiple-Network ERGMs , 2015, The Journal of mathematical sociology.

[28]  P. Diaconis,et al.  Estimating and understanding exponential random graph models , 2011, 1102.2650.

[29]  T. Snijders The statistical evaluation of social network dynamics , 2001 .

[30]  I. Chase,et al.  Social Process and Hierarchy Formation in Small Groups: A Comparative Perspective , 1980 .

[31]  Alberto Caimo,et al.  Bayesian inference for exponential random graph models , 2010, Soc. Networks.

[32]  Carter T. Butts,et al.  4. A Relational Event Framework for Social Action , 2008 .

[33]  A. Agresti,et al.  Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.

[34]  Miranda J. Lubbers,et al.  Group composition and network structure in school classes: a multilevel application of the p∗ model , 2003, Soc. Networks.

[35]  Pavel N. Krivitsky,et al.  Foundations of Finite-, Super-, and Infinite-Population Random Graph Inference , 2017 .

[36]  L. Brown Fundamentals of statistical exponential families: with applications in statistical decision theory , 1986 .

[37]  Martina Morris,et al.  Adjusting for Network Size and Composition Effects in Exponential-Family Random Graph Models. , 2010, Statistical methodology.

[38]  Ove Frank,et al.  http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained , 2007 .

[39]  Fabrizio De Vico Fallani,et al.  A statistical model for brain networks inferred from large-scale electrophysiological signals , 2016, Journal of The Royal Society Interface.

[40]  B. H. Mayhew,,et al.  Size and the Density of Interaction in Human Aggregates , 1976, American Journal of Sociology.

[41]  Johan Koskinen,et al.  Essays on Bayesian Inference for Social Networks , 2004 .

[42]  F. Heider Attitudes and cognitive organization. , 1946, The Journal of psychology.

[43]  David Strauss On a general class of models for interaction , 1986 .

[44]  Martina Morris,et al.  ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks. , 2008, Journal of statistical software.

[45]  J. Jonasson The random triangle model , 1999, Journal of Applied Probability.

[46]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[47]  Emmanuel Lazega,et al.  Multilevel Network Analysis for the Social Sciences; Theory, Methods and Applications , 2016 .

[48]  David R. Hunter,et al.  Curved exponential family models for social networks , 2007, Soc. Networks.

[49]  Mark S Handcock,et al.  Local dependence in random graph models: characterization, properties and statistical inference , 2015, Journal of the American Statistical Association.

[50]  Laura M. Koehly,et al.  Multilevel models for social networks: Hierarchical Bayesian approaches to exponential random graph modeling , 2016, Soc. Networks.

[51]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[52]  Michael Schweinberger,et al.  hergm: Hierarchical Exponential-Family Random Graph Models , 2018 .

[53]  M. Bálek,et al.  Large Networks and Graph Limits , 2022 .

[54]  Julien Brailly,et al.  Exponential Random Graph Models for Social Networks , 2014 .

[55]  Tom A. B. Snijders,et al.  Exponential Random Graph Models for Social Networks , 2013 .

[56]  Pavel N Krivitsky,et al.  On the Question of Effective Sample Size in Network Modeling: An Asymptotic Inquiry. , 2011, Statistical science : a review journal of the Institute of Mathematical Statistics.

[57]  T. Suesse Marginalized Exponential Random Graph Models , 2012 .

[58]  D. Hunter,et al.  Goodness of Fit of Social Network Models , 2008 .

[59]  Yuval Kalish,et al.  Exponential Random Graph Models for Social Networks: Brain, Brawn, or Optimism? Structure and Correlates of Emergent Military Leadership , 2012 .

[60]  Johan H. Koskinen,et al.  Multilevel embeddedness: The case of the global fisheries governance complex , 2016, Soc. Networks.

[61]  P. Pattison,et al.  New Specifications for Exponential Random Graph Models , 2006 .

[62]  Zack W. Almquist,et al.  Using Radical Environmentalist Texts to Uncover Network Structure and Network Features , 2019 .

[63]  Tom A. B. Snijders,et al.  Introduction to stochastic actor-based models for network dynamics , 2010, Soc. Networks.

[64]  P. Zappa,et al.  The Analysis of Multilevel Networks in Organizations: Models and Empirical Tests , 2014 .

[65]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[66]  Garry Robins,et al.  Introduction to multilevel social networks , 2016, Soc. Networks.

[67]  E. Lazega Introduction : Collegial Phenomenon : The Social Mechanisms of Cooperation Among Peers in a Corporate Law Partnership , 2001 .

[68]  S. Goodreau,et al.  Birds of a feather, or friend of a friend? using exponential random graph models to investigate adolescent social networks* , 2009, Demography.