Two-dimensional digital filtering

The problems of designing and implementing LSI systems for the processing of 2-D digital data, such as images or geophone arrays, are reviewed and discussed. This discussion encompasses both FIR and IIR digital filters and with respect to the latter, the issues of stability testing and filter stabilization are also considered. Techniques are also presented whereby such filtering can be accomplished using either 1 or 2-D LSI systems.

[1]  G. D. Bergland,et al.  A guided tour of the fast Fourier transform , 1969, IEEE Spectrum.

[2]  Bobby R. Hunt Minimizing the Computation Time for Using the Technique of Sectioning for Digital Filtering of Pictures , 1972, IEEE Transactions on Computers.

[3]  A.V. Oppenheim,et al.  Analysis of linear digital networks , 1975, Proceedings of the IEEE.

[4]  M. J. D. Powell,et al.  The Differential Correction Algorithm for Rational $\ell _\infty $-Approximation , 1972 .

[5]  J. Bednar,et al.  Stability of spatial digital filters , 1972 .

[6]  F. Brophy,et al.  Synthesis of spectrum shaping digital filters of recursive design , 1975 .

[7]  G. D. Taylor,et al.  An application of linear programming to rational approximation , 1974 .

[8]  S. Treitel,et al.  The Stabilization of Two-Dimensional Recursive Filters via the Discrete Hilbert Transform , 1973 .

[9]  Thomas S. Huang,et al.  Stability of two-dimensional recursive filters , 1972 .

[10]  S. Treitel,et al.  Stability and synthesis of two-dimensional recursive filters , 1972 .

[11]  Brian D. O. Anderson,et al.  Stability of multidimensional digital filters , 1974 .

[12]  David Middleton,et al.  Sampling and Reconstruction of Wave-Number-Limited Functions in N-Dimensional Euclidean Spaces , 1962, Inf. Control..

[13]  D. Dudgeon,et al.  Recursive filter design using differential correction , 1974 .

[14]  C. Burrus,et al.  Fast one-dimensional digital convolution by multidimensional techniques , 1974 .

[15]  R. Mersereau,et al.  The representation of two-dimensional sequences as one-dimensional sequences , 1974 .

[16]  C. Burrus,et al.  Number theoretic transforms to implement fast digital convolution , 1975 .

[17]  J. Goodman Introduction to Fourier optics , 1969 .

[18]  Alan V. Oppenheim,et al.  Discrete representation of signals , 1972 .

[19]  J. Aggarwal,et al.  Picture processing using one-dimensional implementations of discrete planar filters , 1974 .

[20]  H. Ansell On Certain Two-Variable Generalizations of Circuit Theory, with Applications to Networks of Transmission Lines and Lumped Reactances , 1964 .

[21]  Jake K. Aggarwal,et al.  Two-Dimensional Digital Filtering and its Error Analysis , 1974, IEEE Transactions on Computers.

[22]  Peter Pistor,et al.  Stability Criterion for Recursive Filters , 1974, IBM J. Res. Dev..

[23]  Inder Pal Singh Madan Time-Domain Design of Recursive Digital Filters , 1972 .

[24]  A. Venetsanopoulos,et al.  Design of circularly symmetric two-dimensional recursive filters , 1974 .

[25]  Thomas S. Huang,et al.  Image processing , 1971 .

[26]  J. Shanks RECURSION FILTERS FOR DIGITAL PROCESSING , 1967 .

[27]  L. Rabiner,et al.  Design techniques for two-dimensional digital filters , 1972 .

[28]  M. Fahmy,et al.  On the stability of two-dimensional digital filters , 1973 .

[29]  J. Shanks,et al.  Stability criterion for N -dimensional digital filters , 1973 .

[30]  Brian D. O. Anderson,et al.  Stability test for two-dimensional recursive filters , 1973 .

[31]  David Pearce MacAdam,et al.  Digital Image Restoration by Constrained Deconvolution , 1970 .

[32]  T. Huang,et al.  Two-dimensional windows , 1972 .

[33]  S. Treitel,et al.  The Design of Multistage Separable Planar Filters , 1971 .