Constraint satisfaction problem and universal algebra

This column gives a brief survey of current research on the complexity of the constraint satisfaction problem (CSP) over fixed constraint languages.

[1]  W. Taylor Varieties Obeying Homotopy Laws , 1977, Canadian Journal of Mathematics.

[2]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[3]  Toby Walsh,et al.  Handbook of Constraint Programming (Foundations of Artificial Intelligence) , 2006 .

[4]  Róbert Szelepcsényi,et al.  The method of forced enumeration for nondeterministic automata , 1988, Acta Informatica.

[5]  Libor Barto,et al.  Constraint Satisfaction Problems Solvable by Local Consistency Methods , 2014, JACM.

[6]  Andrei A. Bulatov,et al.  Mal'tsev constraints are tractable , 2002, Electron. Colloquium Comput. Complex..

[7]  Hubie Chen Meditations on Quantified Constraint Satisfaction , 2012, Logic and Program Semantics.

[8]  Mario Szegedy,et al.  A new line of attack on the dichotomy conjecture , 2009, STOC '09.

[9]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[10]  Stanislav Zivny,et al.  The Complexity of Valued Constraint Satisfaction Problems , 2012, Cognitive Technologies.

[11]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[12]  Neil Immerman Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..

[13]  Omer Reingold,et al.  Undirected connectivity in log-space , 2008, JACM.

[14]  Andrei A. Bulatov The Complexity of the Counting Constraint Satisfaction Problem , 2008, ICALP.

[15]  R. McKenzie,et al.  Varieties with few subalgebras of powers , 2009 .

[16]  Libor Barto,et al.  The collapse of the bounded width hierarchy , 2016, J. Log. Comput..

[17]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[18]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[19]  Andrei A. Bulatov,et al.  Dualities for Constraint Satisfaction Problems , 2008, Complexity of Constraints.

[20]  L. A. Kaluzhnin,et al.  Galois theory for post algebras. I , 1969 .

[21]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[22]  M. Maróti,et al.  Existence theorems for weakly symmetric operations , 2008 .

[23]  Libor Barto,et al.  Robust satisfiability of constraint satisfaction problems , 2012, STOC '12.

[24]  M. Siggers A strong Mal’cev condition for locally finite varieties omitting the unary type , 2010 .

[25]  A. Bulatov Combinatorial problems raised from 2-semilattices , 2006 .

[26]  Andrei A. Bulatov,et al.  A Simple Algorithm for Mal'tsev Constraints , 2006, SIAM J. Comput..

[27]  Heribert Vollmer,et al.  Complexity of Constraints - An Overview of Current Research Themes [Result of a Dagstuhl Seminar] , 2008, Complexity of Constraints.

[28]  Víctor Dalmau,et al.  Generalized majority-minority operations are tractable , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[29]  D. Geiger CLOSED SYSTEMS OF FUNCTIONS AND PREDICATES , 1968 .

[30]  Pascal Tesson,et al.  Universal algebra and hardness results for constraint satisfaction problems , 2007, Theor. Comput. Sci..

[31]  G. Birkhoff,et al.  On the Structure of Abstract Algebras , 1935 .

[32]  Manuel Bodirsky Constraint Satisfaction Problems with Infinite Templates , 2008, Complexity of Constraints.

[33]  Emil W. Kiss,et al.  On Tractability and Congruence Distributivity , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[34]  Libor Barto,et al.  Congruence Distributivity Implies Bounded Width , 2009, SIAM J. Comput..

[35]  Jaroslav Nesetril,et al.  On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.

[36]  Libor Barto,et al.  The CSP Dichotomy Holds for Digraphs with No Sources and No Sinks (A Positive Answer to a Conjecture of Bang-Jensen and Hell) , 2008, SIAM J. Comput..

[37]  Andrei A. Bulatov,et al.  Complexity of conservative constraint satisfaction problems , 2011, TOCL.

[38]  Peter Jeavons,et al.  On the Algebraic Structure of Combinatorial Problems , 1998, Theor. Comput. Sci..

[39]  B. Larose,et al.  Bounded width problems and algebras , 2007 .

[40]  Pawel M. Idziak,et al.  Tractability and Learnability Arising from Algebras with Few Subpowers , 2010, SIAM J. Comput..

[41]  Martin C. Cooper,et al.  An Algebraic Theory of Complexity for Discrete Optimization , 2012, SIAM J. Comput..

[42]  Barnaby Martin,et al.  A Tetrachotomy for Positive First-Order Logic without Equality , 2011, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[43]  Miklós Maróti,et al.  CD(4) has bounded width , 2007, ArXiv.

[44]  Johan Håstad On the efficient approximability of constraint satisfaction problems , 2007 .

[45]  Libor Barto,et al.  Absorbing Subalgebras, Cyclic Terms, and the Constraint Satisfaction Problem , 2012, Log. Methods Comput. Sci..

[46]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[47]  Andrei A. Bulatov,et al.  Bounded relational width , 2009 .

[48]  L. A. Kaluzhnin,et al.  Galois theory for Post algebras. II , 1969 .

[49]  Prasad Raghavendra,et al.  Optimal algorithms and inapproximability results for every CSP? , 2008, STOC.

[50]  Libor Barto,et al.  The Dichotomy for Conservative Constraint Satisfaction Problems Revisited , 2011, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[51]  D. Hobby,et al.  The structure of finite algebras , 1988 .

[52]  Martin E. Dyer,et al.  An Effective Dichotomy for the Counting Constraint Satisfaction Problem , 2010, SIAM J. Comput..