Coulomb Gas Analogy: A Statistical Physics Approach to Performance Analysis of MIMO Systems

In this correspondence, by adopting the Coulomb gas analogy that is an analytical approach from statistical physics, we derive a closed-form approximation of the cumulative distribution function (CDF) of the largest eigenvalue of a random Gram matrix <inline-formula><tex-math notation="LaTeX">$ \boldsymbol {H}^{H} \boldsymbol {H}$</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">$\boldsymbol {H}$</tex-math></inline-formula> denotes the channel matrix of a multiple-input multiple-output (MIMO) system. The expression of approximation has a simple structure in terms of several elementary functions, which is derived by assuming that the entries of <inline-formula><tex-math notation="LaTeX">$\boldsymbol {H}$</tex-math></inline-formula> have Nakagami-<inline-formula><tex-math notation="LaTeX">$m$</tex-math></inline-formula> distributed amplitude with an independent phase. This assumption is made because it applies in two common cases of the Nakagami-<inline-formula><tex-math notation="LaTeX">$m$</tex-math></inline-formula> distributions, i.e., with a uniformly distributed phase and a complex signal model. Simulation results indicate that the theoretical expression also provides a good approximation to the CDF for Rice and Hoyt distributions when the CDF is within a <italic>near-one</italic> range. This range takes the form of <inline-formula><tex-math notation="LaTeX">$(P_{no}, 1)$</tex-math></inline-formula>, where we assume <inline-formula><tex-math notation="LaTeX">$P_{no} = 10^{-3}$</tex-math></inline-formula> by default in this study. The derived approximation can find many uses for the performance analysis of MIMO beamforming and singular value decomposition MIMO systems, e.g., evaluating the outage probability for these systems.

[1]  Matthew R. McKay,et al.  Largest Eigenvalue Distribution of Noncircularly Symmetric Wishart-Type Matrices With Application to Hoyt-Faded MIMO Communications , 2018, IEEE Transactions on Vehicular Technology.

[2]  Charles R. Johnson,et al.  Matrix Analysis, 2nd Ed , 2012 .

[3]  John M. Cioffi,et al.  On the MIMO Channel Capacity for the Nakagami-m Channel , 2008, IEEE Trans. Inf. Theory.

[4]  Mohamed-Slim Alouini,et al.  Largest eigenvalue of complex Wishart matrices and performance analysis of MIMO MRC systems , 2003, IEEE J. Sel. Areas Commun..

[5]  Jinho Choi,et al.  Large-Scale MIMO Detection Using MCMC Approach With Blockwise Sampling , 2016, IEEE Transactions on Communications.

[6]  Michel Daoud Yacoub,et al.  Nakagami-m phase-envelope joint distribution , 2005 .

[7]  S. Majumdar,et al.  Large deviations of the maximum eigenvalue in Wishart random matrices , 2007, cond-mat/0701371.

[8]  Caijun Zhong,et al.  On the capacity of non-uniform phase MIMO nakagami-m fading channels , 2010, IEEE Communications Letters.

[9]  Massimo Vergassola,et al.  Large deviations of the maximum eigenvalue for wishart and Gaussian random matrices. , 2008, Physical review letters.

[10]  Giuseppe Caire,et al.  Living at the Edge: A Large Deviations Approach to the Outage MIMO Capacity , 2009, IEEE Transactions on Information Theory.

[11]  Ronen Dar,et al.  The Jacobi MIMO Channel , 2013, IEEE Transactions on Information Theory.

[12]  Jinho Choi,et al.  Low Complexity MIMO Detection , 2012 .

[13]  Daniel Pérez Palomar,et al.  Ordered Eigenvalues of a General Class of Hermitian Random Matrices With Application to the Performance Analysis of MIMO Systems , 2009, IEEE Transactions on Signal Processing.

[14]  Mohamed-Slim Alouini,et al.  Digital Communication Over Fading Channels: A Unified Approach to Performance Analysis , 2000 .

[15]  S. O. Rice,et al.  Statistical properties of a sine wave plus random noise , 1948, Bell Syst. Tech. J..

[16]  Ray S. Hoyt Probability functions for the modulus and angle of the normal complex variate , 1947 .

[17]  Matthew R. McKay,et al.  Coulumb Fluid, Painlevé Transcendents, and the Information Theory of MIMO Systems , 2012, IEEE Transactions on Information Theory.

[18]  M.D. Yacoub,et al.  The κ-μ distribution and the η-μ distribution , 2007, IEEE Antennas and Propagation Magazine.

[19]  Jinho Choi,et al.  Lattice Reduction-Based MIMO Iterative Receiver Using Randomized Sampling , 2013, IEEE Transactions on Wireless Communications.

[20]  Sonia Aïssa,et al.  Eigenvalue Distributions of Wishart-Type Random Matrices with Application to the Performance Analysis of MIMO MRC Systems , 2007, IEEE Transactions on Wireless Communications.

[21]  Andrea J. Goldsmith,et al.  Eigenvalue Dynamics of a Central Wishart Matrix With Application to MIMO Systems , 2014, IEEE Transactions on Information Theory.

[22]  Michel Daoud Yacoub,et al.  Nakagami-$m$ Phase–Envelope Joint Distribution: A New Model , 2010, IEEE Transactions on Vehicular Technology.

[23]  Matthew R. McKay,et al.  MIMO multichannel beamforming: SER and outage using new eigenvalue distributions of complex noncentral Wishart matrices , 2006, IEEE Transactions on Communications.

[24]  Lei Zhao,et al.  Diversity and Multiplexing Tradeoff in General Fading Channels , 2007, 2006 40th Annual Conference on Information Sciences and Systems.

[25]  Aris L. Moustakas,et al.  Large deviation approach to the outage optical MIMO capacity , 2013, 2013 IEEE International Symposium on Information Theory.