Dynamic Representation of Sparse Graphs

We present a linear space data structure for maintaining graphs with bounded arboricity--a large class of sparse graphs containing e.g. planar graphs and graphs of bounded treewidth--under edge insertions, edge deletions, and adjacency queries. The data structure supports adjacency queries in worst case O(c) time, and edge insertions and edge deletions in amortized O(1) and O(c+log n) time, respectively, where n is the number of nodes in the graph, and c is the bound on the arboricity.

[1]  Peter Bro Miltersen Error correcting codes, perfect hashing circuits, and deterministic dynamic dictionaries , 1998, SODA '98.

[2]  Avi Wigderson,et al.  Succinct Representations of Graphs , 1984, Inf. Control..

[3]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[4]  Jan van Leeuwen,et al.  Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity , 1994 .

[5]  Moni Naor,et al.  Implicit Representation of Graphs , 1992, SIAM J. Discret. Math..

[6]  György Turán,et al.  On the succinct representation of graphs , 1984, Discret. Appl. Math..

[7]  C. Nash-Williams Decomposition of Finite Graphs Into Forests , 1964 .

[8]  János Komlós,et al.  Storing a sparse table with O(1) worst case access time , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[9]  Xin He,et al.  Compact Encodings of Planar Graphs via Canonical Orderings and Multiple Parentheses , 1998, ICALP.

[10]  Maurice Queyranne,et al.  A network flow solution to some nonlinear 0-1 programming problems, with applications to graph theory , 1982, Networks.

[11]  Venkatesh Raman,et al.  Succinct representation of balanced parentheses, static trees and planar graphs , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[12]  Maurizio Talamo,et al.  Compact Implicit Representation of Graphs , 1998, WG.

[13]  C. Nash-Williams Edge-disjoint spanning trees of finite graphs , 1961 .

[14]  Christos D. Zaroliagis,et al.  Efficient Computation of Implicit Representations of Sparse Graphs , 1997, Discret. Appl. Math..

[15]  Jan van Leeuwen,et al.  Graph Algorithms , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[16]  Zhongfu Zhang,et al.  A short proof of Nash-Williams' theorem for the arboricity of a graph , 1994, Graphs Comb..

[17]  P. Van Geest Jan van Leeuwen , 1991 .

[18]  Roberto Grossi,et al.  Simple Planar Graph Partition into Three Forests , 1998, Discret. Appl. Math..

[19]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .