Planning load-effective dynamic motions of highly articulated human model for generic tasks

The robotic motion planning criteria has evolved from kinematics to dynamics in recent years. Many research achievements have been made in dynamic motion planning, but the externally applied loads are usually limited to the gravity force. Due to the increasing demand for generic tasks, the motion should be generated for various functions such as pulling, pushing, twisting, and bending. In this paper, a comprehensive form of equations of motion, which includes the general external loads applied at any point of branched tree structures, is implemented. An optimization-based algorithm is then developed to generate load-effective motions of redundant tree-structured systems for generic tasks. A highly articulated dual-arm human model is used to generate different effective motions to sustain different external load magnitudes. The results also provide a new scientific insight of human motion.

[1]  Zvi Shiller Optimal Robot Motion Planning and Work-Cell Layout Design , 1997, Robotica.

[2]  J. Bobrow,et al.  Recent Advances on the Algorithmic Optimization of Robot Motion , 2006 .

[3]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[4]  Frank Chongwoo Park,et al.  Optimal robot motions for physical criteria , 2001, J. Field Robotics.

[5]  W. Blajer,et al.  An alternative scheme for determination of joint reaction forces in human multibody models , 2005 .

[6]  Masaya Hirashima,et al.  A new non-orthogonal decomposition method to determine effective torques for three-dimensional joint rotation. , 2007, Journal of biomechanics.

[7]  Steven Dubowsky,et al.  On computing the global time-optimal motions of robotic manipulators in the presence of obstacles , 1991, IEEE Trans. Robotics Autom..

[8]  C. S. G. Lee,et al.  Robotics: Control, Sensing, Vision, and Intelligence , 1987 .

[9]  Joo Hyun Kim,et al.  Optimal Trajectory Planning for Redundant Manipulators Based on Minimum Jerk , 2008 .

[10]  Atsuo Kawamura,et al.  Trajectory generation for redundant manipulators under optimization of consumed electrical energy , 1996, IAS '96. Conference Record of the 1996 IEEE Industry Applications Conference Thirty-First IAS Annual Meeting.

[11]  Matthew P. Reed,et al.  Predicting Force-Exertion Postures from Task Variables , 2007 .

[12]  Yoshihiko Nakamura,et al.  Advanced robotics - redundancy and optimization , 1990 .

[13]  Gregory S. Chirikjian,et al.  O(n) mass matrix inversion for serial manipulators and polypeptide chains using Lie derivatives , 2007, Robotica.

[14]  Bruno Siciliano,et al.  A solution algorithm to the inverse kinematic problem for redundant manipulators , 1988, IEEE J. Robotics Autom..

[15]  James E. Bobrow,et al.  Payload maximization for open chained manipulators: finding weightlifting motions for a Puma 762 robot , 2001, IEEE Trans. Robotics Autom..

[16]  Evangelos Papadopoulos,et al.  A Framework for Large-Force Task Planning of Mobile and Redundant Manipulators , 1999 .

[17]  Haruhisa Kawasaki,et al.  Minimum dynamics parameters of tree structure robot models , 1991, Proceedings IECON '91: 1991 International Conference on Industrial Electronics, Control and Instrumentation.

[18]  Min K. Chung,et al.  Upper body reach posture prediction for ergonomic evaluation models , 1995 .

[19]  Mamoru Akiyama,et al.  Simulation of Laminar Flow over a Backward-Facing Step Using the Lattice BGK Method. , 1997 .

[20]  Hooshang Hemami,et al.  Rigid body dynamics, constraints, and inverses , 2007 .

[21]  Kurt S. Anderson,et al.  Highly Parallelizable Low-Order Dynamics Simulation Algorithm for Multi-Rigid-Body Systems , 2000 .

[22]  John M. Hollerbach,et al.  Local versus global torque optimization of redundant manipulators , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[23]  Vera B. Anand Computer Graphics and Geometric Modeling for Engineers , 1993 .

[24]  Marco Ceccarelli,et al.  An optimum robot path planning with payload constraints , 2002, Robotica.

[25]  Joo Hyun Kim,et al.  Prediction and analysis of human motion dynamics performing various tasks , 2006 .

[26]  J. Denavit,et al.  A kinematic notation for lower pair mechanisms based on matrices , 1955 .

[27]  Daniel C. H. Yang,et al.  Feasibility evaluation of dynamically linearized kinematically redundant planar manipulators , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[28]  C. Y. Chung,et al.  Torque Optimizing Control with Singularity-Robustness for Kinematically Redundant Robots , 2000, J. Intell. Robotic Syst..

[29]  Subir Kumar Saha,et al.  A decomposition of the manipulator inertia matrix , 1997, IEEE Trans. Robotics Autom..

[30]  Kazunori Hase,et al.  Development of Three-Diemnsional Whole-Body Musculoskeletal Model for Various Motion Analyses , 1997 .

[31]  S. McLean,et al.  Development and validation of a 3-D model to predict knee joint loading during dynamic movement. , 2003, Journal of biomechanical engineering.

[32]  Parviz E. Nikravesh,et al.  Computer-aided analysis of mechanical systems , 1988 .

[33]  Miomir Vukobratovic,et al.  A dynamic approach to nominal trajectory synthesis for redundant manipulators , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[34]  Ming-Chuan Leu,et al.  Manipulator Motion Planning in the Presence of Obstacles and Dynamic Constraints , 1991, Int. J. Robotics Res..

[35]  Scott B. Nokleby,et al.  Pose Optimization of Serial Manipulators Using Knowledge of Their Velocity-Degenerate (Singular) Configurations , 2003, J. Field Robotics.

[36]  Jasbir S. Arora,et al.  Introduction to Optimum Design , 1988 .

[37]  David E. Orin,et al.  Robot dynamics: equations and algorithms , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[38]  Katsu Yamane,et al.  Dynamics computation of structure-varying kinematic chains and its application to human figures , 2000, IEEE Trans. Robotics Autom..

[39]  A. Nedungadi,et al.  A Local Solution with Global Characteristics for the Joint Torque Optimization of a Redundant Manipulator , 1989 .

[40]  Evangelos Papadopoulos,et al.  On manipulator posture planning for large force tasks , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[41]  E. J. Haug,et al.  Computer aided kinematics and dynamics of mechanical systems. Vol. 1: basic methods , 1989 .

[42]  Kurt S. Anderson,et al.  A hybrid parallelizable low-order algorithm for dynamics of multi-rigid-body systems: Part I, chain systems , 1999 .

[43]  Aurelio Piazzi,et al.  Global minimum-jerk trajectory planning of robot manipulators , 2000, IEEE Trans. Ind. Electron..

[44]  M. Pandy,et al.  Dynamic optimization of human walking. , 2001, Journal of biomechanical engineering.

[45]  W. Blajer On the Determination of Joint Reactions in Multibody Mechanisms , 2004 .

[46]  Abhinandan Jain,et al.  RECURSIVE FLEXIBLE MULTIBODY SYSTEM DYNAMICS USING SPATIAL OPERATORS , 1992 .