New Materials for Chemical and Biosensors

ABSTRACT Wide band gap materials such as SiC, AlN, GaN, ZnO, and diamond have excellent properties such as high operation temperature when used as field effect devices and a high resonating frequency of the substrate materials used in piezoelectric resonator devices. Integration of FET and resonating sensors on the same chip enables powerful miniaturized devices, which can deliver increased information about a gas mixture or complex liquid. Examples of sensor devices based on different wide band gap materials will be given.

[1]  M. Porter,et al.  Thin aluminum nitride film resonators: miniaturized high sensitivity mass sensors , 1992 .

[2]  Oliver Ambacher,et al.  Sound velocity of AlxGa1−xN thin films obtained by surface acoustic-wave measurements , 1998 .

[3]  John D. Larson,et al.  A BAW antenna duplexer for the 1900 MHz PCS band , 1999, 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027).

[4]  G. Auner,et al.  Platinum–aluminum nitride–silicon carbide diodes as combustible gas sensors , 2000 .

[5]  I. Lundström,et al.  Gas response dependence on gate metal morphology of field-effect devices , 2001 .

[6]  Ingemar Lundström,et al.  Evaluation of on-line hot flue gas measurements , 2001 .

[7]  H. Okushi,et al.  Schottky junction properties of the high conductivity layer of diamond , 2002 .

[8]  O. Tan,et al.  Hydrogen-Sensitive Amorphous Ferroelectric Thin Film Capacitive Devices , 2002 .

[9]  The Commercialization of the SiC Flame Sensor , 2002 .

[10]  Lester F. Eastman,et al.  pH response of GaN surfaces and its application for pH-sensitive field-effect transistors , 2003 .

[11]  Lester F. Eastman,et al.  Electronics and sensors based on pyroelectric AlGaN/GaN heterostructures , 2003 .

[12]  Martin Eickhoff,et al.  Electronics and sensors based on pyroelectric AlGaN/GaN heterostructures – Part B: Sensor applications , 2003 .

[13]  M.P. da Cunha,et al.  High temperature SAW gas sensor on langasite , 2003, Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498).

[14]  Martin Eickhoff,et al.  Influence of surface oxides on hydrogen-sensitive Pd:GaN Schottky diodes , 2003 .

[15]  I. Katardjiev,et al.  Electrical characterization of AlN MIS and MIM structures , 2003 .

[16]  The Electrical Behavior of Pd/AIN/Semiconductor Thin Film Hydrogen Sensing Structures , 2004 .

[17]  Investigations on the possibilities of a MISiCFET sensor system for OBD and combustion control utilizing different catalytic gate materials , 2004 .

[18]  Mitsuaki Yano,et al.  High resistive layers toward ZnO-based enzyme modified field effect transistor , 2004 .

[19]  J. Bjurstrom,et al.  Dependence of the electromechanical coupling on the degree of orientation of c-textured thin AlN films , 2004, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[20]  Saturation and Flow Rate Effects on the Response of a Pd/AIN/SiC Hydrogen Sensor , 2004 .

[21]  Weng Poo Kang,et al.  Diamond microelectronic gas sensor for detection of benzene and toluene , 2004 .

[22]  Martin Stutzmann,et al.  Protein-modified nanocrystalline diamond thin films for biosensor applications , 2004, Nature materials.

[23]  Soumen Basu,et al.  ZnO thin film sensors for detecting dimethyl- and trimethyl-amine vapors , 2004 .

[24]  Zhongfan Liu,et al.  Low-temperature growth and properties of ZnO nanowires , 2004 .

[25]  Stephen E. Saddow,et al.  Advances in silicon carbide processing and applications , 2004 .

[26]  M. Lofdahl,et al.  Using a MISiC-FET sensor for detecting NH/sub 3/ in SCR systems , 2005, IEEE Sensors Journal.

[27]  A. Spetz,et al.  Nanoparticles for long-term stable, more selective MISiCFET gas sensors , 2005 .