Upcycling of Titanium by Molten Salt Electrorefining

[1]  M. Zhang,et al.  Designing against phase and property heterogeneities in additively manufactured titanium alloys , 2022, Nature Communications.

[2]  Hongmin Zhu,et al.  A solid-state electrolysis process for upcycling aluminium scrap , 2022, Nature.

[3]  G. Qiu,et al.  Current situation and development trend of titanium metal industry in China , 2022, International Journal of Minerals, Metallurgy and Materials.

[4]  S. Jiao,et al.  A 4D x-ray computer microtomography for high-temperature electrochemistry , 2022, Science advances.

[5]  Handong Jiao The Current Progress of the Titanium Preparation by Electrolysis in the Room-Temperature Ionic Liquid Electrolytes , 2021, Journal of Advanced Thermal Science Research.

[6]  Kui Liu,et al.  In-situ anodic precipitation process for highly efficient separation of aluminum alloys , 2021, Nature Communications.

[7]  D. Fang,et al.  Segmentation of computed tomography images and high-precision reconstruction of rubber composite structure based on deep learning , 2021 .

[8]  Yongfeng Lu,et al.  Spontaneous formation of multilayer refractory carbide coatings in a molten salt media , 2021, Proceedings of the National Academy of Sciences.

[9]  Xibao Li,et al.  Molten salt synthesis of titanium carbide using different carbon sources as templates , 2021 .

[10]  D. Fang,et al.  Sustainable recycling of titanium scraps and purity titanium production via molten salt electrolysis , 2020 .

[11]  M. Gibson,et al.  Additive manufacturing of ultrafine-grained high-strength titanium alloys , 2019, Nature.

[12]  T. Okabe,et al.  Electrochemical Deoxidation of Titanium Scrap in MgCl2-HoCl3 System , 2019, Journal of The Electrochemical Society.

[13]  J. A. Francis,et al.  Titanium , 2019, Materials Science and Technology.

[14]  T. Okabe,et al.  Current Status of Titanium Recycling and Related Technologies , 2018, JOM.

[15]  T. Okabe,et al.  Thermodynamic Considerations of Direct Oxygen Removal from Titanium by Utilizing the Deoxidation Capability of Rare Earth Metals , 2018, Metallurgical and Materials Transactions B.

[16]  J. Eckert,et al.  Amorphous martensite in β-Ti alloys , 2018, Nature Communications.

[17]  S. Gaiani,et al.  Recycling of alpha-titanium technological scrap for exhaust system parts manufacturing , 2013 .

[18]  J. Song,et al.  The Equilibrium Between Titanium Ions and Titanium Metal in NaCl-KCl Equimolar Molten Salt , 2013, Metallurgical and Materials Transactions B.

[19]  Wensheng Zhang,et al.  A literature review of titanium metallurgical processes , 2011 .

[20]  B. Friedrich,et al.  Recycling of gamma titanium aluminide scrap from investment casting operations , 2011 .

[21]  T. Okabe,et al.  Recovery of titanium metal scrap by utilizing chloride wastes , 2008 .

[22]  B. Rand,et al.  Preparation of a titanium carbide coating on carbon fibre using a molten salt method , 2008 .

[23]  R. Suzuki Direct reduction processes for titanium oxide in molten salt , 2007 .

[24]  S. Jiao,et al.  Novel metallurgical process for titanium production , 2006 .

[25]  T. Okabe,et al.  High-Speed Titanium Production by Magnesiothermic Reduction of Titanium Trichloride , 2006 .

[26]  H. Sibum,et al.  Titanium and Titanium Alloys—From Raw Material to Semi‐finished Products , 2003 .

[27]  Derek J. Fray,et al.  Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride , 2000, Nature.

[28]  J. Nettle,et al.  Some Observations on the Kroll Process for Titanium , 1954 .

[29]  M. Straumanis,et al.  The Mechanism of Deposition of Titanium Coatings from Fused Salt Baths , 1957 .