Insight into the Ion-Dependent Capacity Mismatch in Alkali Metal Ion Batteries by in Situ Magnetometry

[1]  C. Li,et al.  Elucidating the charge-transfer and Li-ion-migration mechanisms in commercial lithium-ion batteries with advanced electron microscopy , 2022, Nano Research Energy.

[2]  Xiaobo Ji,et al.  Strongly Coupled Interfacial Engineering Inspired by Robotic Arms Enable High‐Performance Sodium‐Ion Capacitors , 2022, Advanced Functional Materials.

[3]  Hongsen Li,et al.  Mechanistic understanding of the charge storage processes in FeF 2 aggregates assembled with cylindrical nanoparticles as a cathode material for lithium‐ion batteries by in situ magnetometry , 2022, Carbon Energy.

[4]  Hong Wang,et al.  Electrode-Electrolyte Interfacial Chemistry Modulation for Ultra-High Rate Sodium-Ion Battery. , 2022, Angewandte Chemie.

[5]  Xiaobo Ji,et al.  Ultra-Low-Dose Pre-Metallation Strategy Served for Commercial Metal-Ion Capacitors , 2022, Nano-Micro Letters.

[6]  Jiawei Chen,et al.  Sodium-ion Battery with a Wide Operation-Temperature Range from -70 to 100 °C. , 2022, Angewandte Chemie.

[7]  Hongsen Li,et al.  Fast potassium storage in porous CoV2O6 nanosphere@graphene oxide towards high-performance potassium-ion capacitors , 2021 .

[8]  Xiaobo Ji,et al.  Methods of improving the initial coulombic efficiency and rate performance of both anode and cathode materials for sodium-ion batteries , 2021, Chinese Chemical Letters.

[9]  Hongsen Li,et al.  Reacquainting the Electrochemical Conversion Mechanism of FeS2 Sodium-Ion Batteries by Operando Magnetometry. , 2021, Journal of the American Chemical Society.

[10]  Xing-long Wu,et al.  SbPS4: A novel anode for high-performance sodium-ion batteries , 2021, Chinese Chemical Letters.

[11]  Yaxiang Lu,et al.  Fundamentals, status and promise of sodium-based batteries , 2021, Nature Reviews Materials.

[12]  Hongsen Li,et al.  Operando Magnetometry Probing the Charge Storage Mechanism of CoO Lithium‐Ion Batteries , 2021, Advanced materials.

[13]  Lan Jiang,et al.  Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication , 2020, Nature Communications.

[14]  Chenglong Zhao,et al.  Rational design of layered oxide materials for sodium-ion batteries , 2020, Science.

[15]  B. Dunn,et al.  Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries , 2020, Nature Communications.

[16]  Jian Yang,et al.  Improved Na storage and Coulombic efficiency in TiP2O7@C microflowers for sodium ion batteries , 2020, Nano Research.

[17]  Jiaqi Xu,et al.  Processing solid wood into a composite phase change material for thermal energy storage by introducing silica-stabilized polyethylene glycol , 2020 .

[18]  Lin Gu,et al.  Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry , 2020, Nature Materials.

[19]  Qinghua Zhang,et al.  Lithium lanthanum titanate perovskite as an anode for lithium ion batteries , 2020, Nature Communications.

[20]  A. Dolocan,et al.  Room‐Temperature All‐Liquid‐Metal Batteries Based on Fusible Alloys with Regulated Interfacial Chemistry and Wetting , 2020, Advanced materials.

[21]  Hongsen Li,et al.  Designing Uniformly Layered FeTiO3 Assemblies Consisting of Fine Nanoparticles Enabling High-Performance Quasi-Solid-State Sodium-Ion Capacitors , 2020, Frontiers in Chemistry.

[22]  Xiaoming Xu,et al.  Insights into the Storage Mechanism of Layered VS2 Cathode in Alkali Metal‐Ion Batteries , 2020, Advanced Energy Materials.

[23]  Hongsen Li,et al.  Flexible sodium-ion based energy storage devices: Recent progress and challenges , 2020 .

[24]  C. Ferrara,et al.  FeTiO 3 as Anode Material for Sodium‐Ion Batteries: from Morphology Control to Decomposition , 2020 .

[25]  Hyun‐Wook Lee,et al.  Understanding the conversion mechanism and performance of monodisperse FeF2 nanocrystal cathodes , 2020, Nature Materials.

[26]  Sung Kwan Park,et al.  Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes , 2020, Nature Materials.

[27]  D. Bresser,et al.  Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium‐ and Sodium‐Ion Batteries , 2019, Advanced Energy Materials.

[28]  R. Stolkin,et al.  Recycling lithium-ion batteries from electric vehicles , 2019, Nature.

[29]  Jin Leng,et al.  A multi-shelled V2O3/C composite with an overall coupled carbon scaffold enabling ultrafast and stable lithium/sodium storage , 2019, Journal of Materials Chemistry A.

[30]  Yi Cui,et al.  Challenges and opportunities towards fast-charging battery materials , 2019, Nature Energy.

[31]  Feixiang Wu,et al.  Hierarchical Metal Sulfide/Carbon Spheres: A Generalized Synthesis and High Sodium-Storage Performance. , 2019, Angewandte Chemie.

[32]  S. Dou,et al.  NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density , 2019, Nature Communications.

[33]  Lin Guo,et al.  Layered Potassium Vanadate K0.5V2O5 as a Cathode Material for Nonaqueous Potassium Ion Batteries , 2018 .

[34]  Licheng Miao,et al.  An Alternative to Lithium Metal Anodes: Non-dendritic and Highly Reversible Sodium Metal Anodes for Li-Na Hybrid Batteries. , 2018, Angewandte Chemie.

[35]  Lauren E. Marbella,et al.  Niobium tungsten oxides for high-rate lithium-ion energy storage , 2018, Nature.

[36]  R. Hagiwara,et al.  High-capacity FeTiO3/C negative electrode for sodium-ion batteries with ultralong cycle life , 2018, Journal of Power Sources.

[37]  C. Wessells,et al.  Monovalent manganese based anodes and co-solvent electrolyte for stable low-cost high-rate sodium-ion batteries , 2018, Nature Communications.

[38]  S. Jiao,et al.  Porous CuO microsphere architectures as high-performance cathode materials for aluminum-ion batteries , 2018 .

[39]  Prasant Kumar Nayak,et al.  From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises. , 2018, Angewandte Chemie.

[40]  T. Masese,et al.  Grain-boundary-rich mesoporous NiTiO3 micro-prism as high tap-density, super rate and long life anode for sodium and lithium ion batteries , 2017, Energy Storage Materials.

[41]  R. Hu,et al.  Ilmenite Nanotubes for High Stability and High Rate Sodium-Ion Battery Anodes. , 2017, ACS nano.

[42]  Xiaogang Liu,et al.  Multishelled Nix Co3-x O4 Hollow Microspheres Derived from Bimetal-Organic Frameworks as Anode Materials for High-Performance Lithium-Ion Batteries. , 2017, Small.

[43]  Jinping Liu,et al.  Battery‐Supercapacitor Hybrid Devices: Recent Progress and Future Prospects , 2017, Advanced science.

[44]  S. Gosavi,et al.  Nickel-titanium oxide as a novel anode material for rechargeable sodium-ion batteries , 2016 .

[45]  Yuanyuan Guo,et al.  A High‐Energy Lithium‐Ion Capacitor by Integration of a 3D Interconnected Titanium Carbide Nanoparticle Chain Anode with a Pyridine‐Derived Porous Nitrogen‐Doped Carbon Cathode , 2016 .

[46]  D. Yan,et al.  A new sodium storage mechanism of TiO2 for sodium ion batteries , 2016 .

[47]  S. Cha,et al.  Nickel titanate lithium-ion battery anodes with high reversible capacity and high-rate long-cycle life performance , 2016 .

[48]  Jong‐Won Lee,et al.  One-dimensional nanofiber architecture of an anatase TiO2–carbon composite with improved sodium storage performance , 2015 .

[49]  Zhanhu Guo,et al.  Porous ternary TiO2/MnTiO3@C hybrid microspheres as anode materials with enhanced electrochemical performances , 2015 .

[50]  D. Zhao,et al.  Graphitic Carbon Conformal Coating of Mesoporous TiO2 Hollow Spheres for High-Performance Lithium Ion Battery Anodes. , 2015, Journal of the American Chemical Society.

[51]  N. Ji,et al.  Iron(II) Disulfides as Precursors of Highly Selective Catalysts for Hydrodeoxygenation of Dibenzyl Ether into Toluene , 2015 .

[52]  L. Fu,et al.  Thermodynamics of Lithium Storage at Abrupt Junctions: Modeling and Experimental Evidence , 2014 .

[53]  Xiao Hua,et al.  Origin of additional capacities in metal oxide lithium-ion battery electrodes. , 2013, Nature materials.

[54]  Liping Li,et al.  Synthesis of FeTiO3 nanosheets with {0001} facets exposed: enhanced electrochemical performance and catalytic activity , 2013 .

[55]  D. Ye,et al.  Influence of partial Mn-substitution on surface oxygen species of LaCoO3 catalysts , 2013 .

[56]  P. Bruce,et al.  TiO2‐(B) Nanotubes as Anodes for Lithium Batteries: Origin and Mitigation of Irreversible Capacity , 2012 .

[57]  Dominik Samuelis,et al.  Sustained Lithium‐Storage Performance of Hierarchical, Nanoporous Anatase TiO2 at High Rates: Emphasis on Interfacial Storage Phenomena , 2011 .

[58]  L. Dubrovinsky,et al.  Structural characterization of the FeTiO3–MnTiO3 solid solution , 2010 .

[59]  Gong-Ru Lin,et al.  Nanograin crystalline transformation enhanced UV transparency of annealing refined indium tin oxide film , 2009 .

[60]  E. Tsymbal,et al.  Surface magnetoelectric effect in ferromagnetic metal films. , 2008, Physical review letters.

[61]  J. Rondinelli,et al.  Carrier-mediated magnetoelectricity in complex oxide heterostructures. , 2007, Nature nanotechnology.

[62]  M. Wagemaker,et al.  Large impact of particle size on insertion reactions. A case for anatase Li(x)TiO2. , 2007, Journal of the American Chemical Society.

[63]  E. Sudoł,et al.  XPS and FTIR Surface Characterization of TiO2 Particles Used in Polymer Encapsulation , 2001 .

[64]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[65]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[66]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[67]  Hongsen Li,et al.  Layered Fe2(MoO4)3 assemblies with pseudocapacitive properties as advanced materials for high-performance sodium-ion capacitors , 2022 .

[68]  D. Bresser,et al.  Unfolding the Mechanism of Sodium Insertion in Anatase TiO2 Nanoparticles , 2015 .