Computation of Asymptotic Expansions of Turning Point Problems via Cauchy’s Integral Formula: Bessel Functions
暂无分享,去创建一个
[1] W. Boyd. Asymptotic expansions for the coefficient functions that arise in turning-point problems , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[2] Nico M. Temme,et al. Numerical methods for special functions , 2007 .
[3] S. L. Daniel,et al. CDC 6600 Subroutines IBESS and JBESS for Bessel Functions Iυ(x) and Jυ(x), x≥0,υ≥0 , 1977, TOMS.
[4] Frank W. J. Olver,et al. Airy and related functions , 2010, NIST Handbook of Mathematical Functions.
[5] D. E. Amos. Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order , 1986, TOMS.
[6] Folkmar Bornemann,et al. Accuracy and Stability of Computing High-order Derivatives of Analytic Functions by Cauchy Integrals , 2009, Found. Comput. Math..
[7] A. Gray. Bessel Functions , 1899, Nature.
[8] T. M. Dunster. Asymptotics of the eigenvalues of the rotating harmonic oscillator , 1998 .
[9] Nico M. Temme,et al. Algorithm 819: AIZ, BIZ: two Fortran 77 routines for the computation of complex Airy functions , 2002, TOMS.
[10] Bruce R. Fabijonas,et al. Algorithm 838: Airy Functions , 2004, TOMS.
[11] N. Temme. Numerical algorithms for uniform Airy-type asymptotic expansions , 2004, Numerical Algorithms.
[12] F. Olver. Asymptotics and Special Functions , 1974 .