Future Physical Environments and Concurrent Computation

Using graph-based representations of computation problems [1]–[3], the communication function of a “pseudo-general purpose,” massively parallel computing environment is discussed to help define technology-focussed realizations of that communication function. Compatible computation problems are neither constrained to highly regular structures (such as systolic arrays and their generalizations [4]) nor extended to the globally non-deterministic behavior of many general purpose problems [5]. A fully distributed [6], data driven [7] computing environment is assumed, emphasizing the impact of communications on algorithm execution [8]. Evolution of such massively concurrent computing environments is necessary to sustain the growth of computing power as device technologies approach fundamental limits on dimensional scaling and higher device performance [9],[10].

[1]  Joseph W. Goodman,et al.  Optical Interconnections In Microelectronics , 1984, Photonics West - Lasers and Applications in Science and Engineering.

[2]  Richard P. Hopkins,et al.  Data-Driven and Demand-Driven Computer Architecture , 1982, CSUR.

[3]  Dennis Gannon,et al.  On the Impact of Communication Complexity on the Design of Parallel Numerical Algorithms , 1984, IEEE Transactions on Computers.

[4]  L. Hornak,et al.  On the feasibility of through-wafer optical interconnects for hybrid wafer-scale-integrated architectures , 1987, IEEE Transactions on Electron Devices.

[5]  Anil Khurana,et al.  Superconductivity Seen Above the Boiling Point of Nitrogen , 1987 .

[6]  C. Huang,et al.  Silicon-On-Silicon Packaging , 1984 .

[7]  J.D. Meindl,et al.  Ultra-large scale integration , 1984, IEEE Transactions on Electron Devices.

[8]  K. S. Jayaraman,et al.  Superconductivity at room temperature , 1987, Nature.

[9]  Alan V. Brown An Overview of Josephson Packaging , 1980, IBM J. Res. Dev..

[10]  Chen,et al.  Observation of the reverse ac Josephson effect in Y-Ba-Cu-O at 240 K. , 1987, Physical review letters.

[11]  R.W. Keyes,et al.  Fundamental limits in digital information processing , 1981, Proceedings of the IEEE.

[12]  T.E. Mangir,et al.  Sources of failures and yield improvement for VLSI and restructurable interconnects for RVLSI and WSI: Part I—Sources of failures and yield improvement for VLSI , 1984, Proceedings of the IEEE.

[13]  F.J. Leonberger,et al.  Optical interconnections for VLSI systems , 1984, Proceedings of the IEEE.

[14]  Glenn H. Chapman,et al.  A wafer-scale digital integrator using restructurable VSLI , 1985 .

[15]  T.R. Gheewala,et al.  Josephson-logic devices and circuits , 1980, IEEE Transactions on Electron Devices.

[16]  J. Goodman Optical interconnection for VLSI , 1984 .

[17]  M. J. Day,et al.  Yield-enhancement of a large systolic array chip , 1984 .

[18]  Anil Khurana,et al.  Even Lanthanum Copper Oxide is Superconducting , 1987 .

[19]  Chu,et al.  Superconductivity above 90 K in the square-planar compound system ABa2Cu3O6+x with A=Y, La, Nd, Sm, Eu, Gd, Ho, Er and Lu. , 1987, Physical review letters.

[20]  D. V. Bhaskar Rao,et al.  Wavefront Array Processor: Language, Architecture, and Applications , 1982, IEEE Transactions on Computers.

[21]  J. Zeman,et al.  Systematic design and programming of signal processors, using project management techniques , 1983 .

[22]  M. Hatamian,et al.  FIR digital filters for high sample rate applications , 1987, IEEE Communications Magazine.

[23]  Arnold L. Rosenberg,et al.  Three-Dimensional VLSI: a case study , 1983, JACM.

[24]  Mehdi Hatamian,et al.  Fundamental interconnection issues , 1987, AT&T Technical Journal.

[25]  Richard L. Kautz,et al.  Picosecond pulses on superconducting striplines , 1978 .

[26]  S. Tewksbury,et al.  Chip Alignment Templates for Multichip Module Assembly , 1987 .

[27]  Frank Thomson Leighton,et al.  Wafer-Scale Integration of Systolic Arrays , 1985, IEEE Trans. Computers.

[28]  R.C. Aubusson,et al.  Wafer-scale integration-a fault-tolerant procedure , 1978, IEEE Journal of Solid-State Circuits.

[29]  Graham R. Nudd,et al.  A Cellular VLSI Architecture , 1984, Computer.

[30]  S. Forrest,et al.  Monolithic optoelectronic integration: A new component technology for lightwave communications , 1985, Journal of Lightwave Technology.

[31]  Thomas Kailath,et al.  On hardware description from block diagrams , 1984, ICASSP.

[32]  Manfred Broy,et al.  A Theory for Nondeterminism, Parallelism, Communication, and Concurrency , 1986, Theor. Comput. Sci..