System-Based Approaches for Structural Optimization of Flexible Mechanisms

This paper reviews the state-of-the-art methods to perform structural optimization of flexible mechanisms. These methods are based on a system-based approach, i.e. the formulation of the design problem incorporates the time response of the mechanism that is obtained from a dynamic simulation of the flexible multibody system. The system-based approach aims at considering as precisely as possible the effects of nonlinear dynamic loading under various operating conditions. Also, the optimization process enhances most existing studies which are limited to (quasi-) static or frequency domain loading conditions. This paper briefly introduces flexible multibody system dynamics and structural optimization techniques. Afterwards, the two main methods, named the weakly and the fully coupled methods, that couple both disciplines are presented in details and the influence of the multibody system formalism is analyzed. The advantages and drawbacks of both methods are discussed and future possible research areas are mentioned.

[1]  J. Arora,et al.  Design sensitivity analysis and optimization of dynamic response , 1984 .

[2]  Qian Wang,et al.  A study of alternative formulations for optimization of structural and mechanical systems subjected to static and dynamic loads , 2006 .

[3]  Edward J. Haug,et al.  Design Sensitivity Analysis and Optimization of Kinematically Driven Systems , 1984 .

[4]  Emmanuel Tromme,et al.  Structural optimization of flexible components within a multibody dynamics approach , 2015 .

[5]  A. Shabana,et al.  Implicit and explicit integration in the solution of the absolute nodal coordinate differential/algebraic equations , 2008 .

[6]  O. Bauchau,et al.  The Vectorial Parameterization of Rotation , 2003 .

[7]  Michael Rygaard Hansen,et al.  An Efficient Method for Synthesis of Planar Multibody Systems Including Shape of Bodies as Design Variables , 1998 .

[8]  M. Crisfield,et al.  Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  Daniel A. Tortorelli,et al.  Sensitivity analysis for non‐linear constrained elastostatic systems , 1992 .

[10]  E. Fuehrer C. Eich,et al.  Numerical Methods in Multibody Dynamies , 1992 .

[11]  C. Bottasso,et al.  Optimal Control of Multibody Systems Using an Energy Preserving Direct Transcription Method , 2004 .

[12]  Ole Sigmund,et al.  On the Design of Compliant Mechanisms Using Topology Optimization , 1997 .

[13]  J. C. Simo,et al.  The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .

[14]  R. Haftka,et al.  Elements of Structural Optimization , 1984 .

[15]  Olivier Bruls,et al.  Geometrically exact beam finite element formulated on the special Euclidean group SE(3) , 2014 .

[16]  Edward J. Haug,et al.  Applied optimal design: Mechanical and structural systems , 1979 .

[17]  Edward J. Haug,et al.  Design Sensitivity Analysis and Optimization of Dynamically Driven Systems , 1984 .

[18]  D. Bestle,et al.  Sensitivity analysis of constrained multibody systems , 1992, Archive of Applied Mechanics.

[19]  Emmanuel Tromme,et al.  Weakly and fully coupled methods for structural optimization of flexible mechanisms , 2016 .

[20]  V. Braibant,et al.  Shape optimal design using B-splines , 1984 .

[21]  O. V. Stryk Optimal control of multibody systems in minimal coordinates , 1998 .

[22]  Hilding Elmqvist,et al.  Structural topology optimization of multibody systems , 2015 .

[23]  McCarthy,et al.  Geometric Design of Linkages , 2000 .

[24]  Olivier Bruls,et al.  On the Use of Lie Group Time Integrators in Multibody Dynamics , 2010 .

[25]  O. Sigmund,et al.  Efficient use of iterative solvers in nested topology optimization , 2010 .

[26]  J. S. Lamancusa,et al.  Optimum structural design of robotic manipulators with fiber reinforced composite materials , 1990 .

[27]  Gyung-Jin Park,et al.  Transformation of dynamic loads into equivalent static loads based on modal analysis , 1999 .

[28]  Atsushi Kawamoto,et al.  Path‐generation of articulated mechanisms by shape and topology variations in non‐linear truss representation , 2005 .

[29]  R. W. Mayne,et al.  Optimum Design of an Impact Absorber , 1974 .

[30]  J. P. Dias,et al.  Sensitivity Analysis of Rigid-Flexible Multibody Systems , 1997 .

[31]  Martín A. Pucheta,et al.  An automated method for type synthesis of planar linkages based on a constrained subgraph isomorphism detection , 2007 .

[32]  Zheng-Dong Ma,et al.  Efficient sensitivity analysis for multibody dynamics systems using an iterative steps method with application in topology optimization , 2011 .

[33]  Ahmed A. Shabana,et al.  Flexible Multibody Simulation and Choice of Shape Functions , 1999 .

[34]  Albert Albers,et al.  Automated topology optimization of flexible components in hybrid finite element multibody systems using ADAMS/Flex and MSC.Construct , 2001 .

[35]  Edward J. Haug,et al.  Optimal structural design under dynamic loads , 1977 .

[36]  ChangHwan Kim,et al.  Optimization of flexible components of multibody systems via equivalent static loads , 2010 .

[37]  Olivier Bruls,et al.  Lie group generalized-α time integration of constrained flexible multibody systems , 2012 .

[38]  J. Bobrow,et al.  Time-Optimal Control of Robotic Manipulators Along Specified Paths , 1985 .

[39]  Olivier Bruls,et al.  An integrated control-structure design for manipulators with flexible links , 2015 .

[40]  J. Snyman,et al.  On nonassembly in the optimal dimensional synthesis of planar mechanisms , 2001 .

[41]  Arthur G. Erdman,et al.  Mechanism Design : Analysis and Synthesis , 1984 .

[42]  Jorge Ambrósio,et al.  Optimization of a complex flexible multibody systems with composite materials , 2007 .

[43]  O. Sigmund,et al.  Topology optimization approaches , 2013, Structural and Multidisciplinary Optimization.

[44]  S. K. Ider,et al.  Nonlinear modeling of flexible multibody systems dynamics subjected to variable constraints , 1989 .

[45]  S. K. Ider,et al.  Optimum design of high-speed flexible robotic arms with dynamic behavior constraints , 1997 .

[46]  Adrian Sandu,et al.  Direct and Adjoint Sensitivity Analysis of Ordinary Differential Equation Multibody Formulations , 2014, Journal of Computational and Nonlinear Dynamics.

[47]  B. D. Veubeke,et al.  The dynamics of flexible bodies , 1976 .

[48]  M. S. Pereira,et al.  Optimization of Rigid and Flexible Multibody Systems With Application to Vehicle Dynamics and Crashworthiness , 2003 .

[49]  G. Park,et al.  Validation of a Structural Optimization Algorithm Transforming Dynamic Loads into Equivalent Static Loads , 2003 .

[50]  Peter Eberhard,et al.  Optimization of Multibody Systems and Their Structural Components , 2011 .

[51]  Olivier Bruls,et al.  On the equivalent static load method for flexible multibody systems described with a nonlinear finite element formalism , 2016 .

[52]  Claus Führer,et al.  Numerical Methods in Multibody Dynamics , 2013 .

[53]  Olof Friberg,et al.  A method for selecting deformation modes in flexible multibody dynamics , 1991 .

[54]  K. D. Willmert,et al.  Optimum Design of a Linear Multi-Degree-of-Freedom Shock Isolation System , 1972 .

[55]  Olivier Bruls,et al.  A formulation on the special Euclidean group for dynamic analysis of multibody systems , 2014 .

[56]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[57]  Ahmed A. Shabana,et al.  Dynamics of Multibody Systems , 2020 .

[58]  Gyung-Jin Park,et al.  Nonlinear dynamic response topology optimization using the equivalent static loads method , 2012 .

[59]  A. Held,et al.  Structural sensitivity analysis of flexible multibody systems modeled with the floating frame of reference approach using the adjoint variable method , 2017 .

[60]  Jan Swevers,et al.  Time-Optimal Path Tracking for Robots: A Convex Optimization Approach , 2009, IEEE Transactions on Automatic Control.

[61]  Larsgunnar Nilsson,et al.  Optimization of a car body component subjected to side impact , 2001 .

[62]  Jasbir S. Arora,et al.  Optimal Design of Latticed Towers Subjected to Earthquake Loading , 2002 .

[63]  J. Mayo,et al.  Efficient Evaluation of the Elastic Forces and the Jacobian in the Absolute Nodal Coordinate Formulation , 2004 .

[64]  Alberto Cardona,et al.  Time integration of the equations of motion in mechanism analysis , 2014 .

[65]  Albert Albers,et al.  Structural Optimization of Components in Controlled Mechanical Systems , 2007 .

[66]  Q. Tian,et al.  Topology optimization based on level set for a flexible multibody system modeled via ANCF , 2017 .

[67]  Gyung-Jin Park,et al.  A new method for simultaneous optimum design of structural and control systems , 2015 .

[68]  R. Haftka,et al.  Review of options for structural design sensitivity analysis. Part 1: Linear systems , 2005 .

[69]  Michaël Bruyneel,et al.  Discussion on the optimization problem formulation of flexible components in multibody systems , 2013 .

[70]  Gyung-Jin Park,et al.  A review of optimization of structures subjected to transient loads , 2006 .

[71]  Martín A. Pucheta,et al.  Synthesis and Optimization of Flexible Mechanisms , 2009 .

[72]  D. Bestle,et al.  Analyzing and Optimizing Multibody Systems , 1992 .

[73]  Roland Wüchner,et al.  Optimal shapes of mechanically motivated surfaces , 2010 .

[74]  Albert Albers,et al.  Automated structural optimization of flexible components using MSC.ADAMS/Flex and MSC.Nastran Sol200 , 2002 .

[75]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[76]  G. Park,et al.  Determination of the crash pulse and optimization of the crash components using the response surface approximate optimization , 2003 .

[77]  Anders Forsgren,et al.  Interior Methods for Nonlinear Optimization , 2002, SIAM Rev..

[78]  D. Bertsekas,et al.  Efficient dynamic programming implementations of Newton's method for unconstrained optimal control problems , 1989 .

[79]  Niels Olhoff,et al.  Topology optimization of continuum structures: A review* , 2001 .

[80]  C. Fleury,et al.  A family of MMA approximations for structural optimization , 2002 .

[81]  Mathias Stolpe On the equivalent static loads approach for dynamic response structural optimization , 2014 .

[82]  van Dh Dick Campen,et al.  Optimization of Multibody Systems Using Approximation Concepts , 1996 .

[83]  Edward J. Haug,et al.  A State Space Technique for Optimal Design of Mechanisms , 1982 .

[84]  L.F.P. Etman,et al.  Design Optimization of Multibody Systems by Sequential Approximation , 1998 .

[85]  Gyung-Jin Park,et al.  Optimization of Flexible Multibody Dynamic Systems Using the Equivalent Static Load Method , 2005 .

[86]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[87]  Timothy W. Simpson,et al.  Design and Analysis of Computer Experiments in Multidisciplinary Design Optimization: A Review of How Far We Have Come - Or Not , 2008 .

[88]  M. H. Wright The interior-point revolution in optimization: History, recent developments, and lasting consequences , 2004 .

[89]  O. Bauchau,et al.  Numerical integration of non‐linear elastic multi‐body systems , 1995 .

[90]  J. C. Simo,et al.  Non-linear dynamics of three-dimensional rods: Exact energy and momentum conserving algorithms , 1995 .

[91]  Lucien A. Schmit,et al.  Optimum Structural Design with Dynamic Constraints , 1976 .

[92]  Gyung-Jin Park,et al.  Structural optimization using equivalent static loads at all time intervals , 2002 .

[93]  J. M. Hansen,et al.  Dimensional Synthesis of Spatial Mechanisms and the Problem of Non-Assembly , 2006 .

[94]  Ahmed A. Shabana,et al.  Flexible Multibody Dynamics: Review of Past and Recent Developments , 1997 .

[95]  V. Braibant,et al.  Structural optimization: A new dual method using mixed variables , 1986 .

[96]  O. Brüls,et al.  Inverse dynamics of serial and parallel underactuated multibody systems using a DAE optimal control approach , 2013 .

[97]  John M. Hansen Synthesis of Mechanisms Using Time-Varying Dimensions , 2002 .

[98]  Hasan Kurtaran,et al.  Design optimization of multi-body systems under impact loading by response surface methodology , 2001 .

[99]  D. Tortorelli,et al.  Structural optimization of multibody system components described using level set techniques , 2015 .

[100]  G. N. Sandor,et al.  A General Method for Kineto-Elastodynamic Analysis and Synthesis of Mechanisms , 1972 .

[101]  Jasbir S. Arora,et al.  Design sensitivity analysis of nonlinear dynamic response of structural and mechanical systems , 1992 .

[102]  Robert Seifried,et al.  Integrated Design Approaches for Controlled Flexible Multibody Systems , 2011 .

[103]  William L. Cleghorn,et al.  Optimum design of high-speed flexible mechanisms , 1981 .

[104]  J. M. Hansen,et al.  An Efficient Method for Synthesis of Mechanisms Using an Optimization Method , 1996 .

[105]  Raphael T. Haftka,et al.  Surrogate-based Analysis and Optimization , 2005 .

[106]  U-Seok Choe,et al.  Transformation of a Dynamic Load into an Equivalent Static Load and Shape Optimization of the Road Arm in Self-Propelled Howitzer , 1996 .

[107]  E. Haug,et al.  Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems , 1982 .

[108]  M. Géradin,et al.  Flexible Multibody Dynamics: A Finite Element Approach , 2001 .

[109]  Paul Fisette,et al.  Optimal synthesis of planar mechanisms via an extensible-link approach , 2010 .

[110]  Tamer M. Wasfy,et al.  Modeling and sensitivity analysis of multibody systems using new solid, shell and beam elements , 1996 .

[111]  L. Watson,et al.  Design-oriented identification of critical times in transient response , 1986 .

[112]  Andy J. Keane,et al.  Recent advances in surrogate-based optimization , 2009 .

[113]  Krister Svanberg,et al.  A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations , 2002, SIAM J. Optim..

[114]  Alain Remouchamps,et al.  Optimization methods for advanced design of aircraft panels: a comparison , 2010 .

[115]  Pierre Beckers,et al.  RECENT DEVELOPMENTS IN SHAPE SENSITIVITY ANALYSIS: THE PHYSICAL APPROACH , 1991 .

[116]  George N. Sandor,et al.  High-Speed Mechanism Design—A General Analytical Approach , 1975 .

[117]  Hasan Kurtaran,et al.  Crashworthiness design optimization using successive response surface approximations , 2002 .

[118]  K. Schittkowski NLPQL: A fortran subroutine solving constrained nonlinear programming problems , 1986 .

[119]  J. Marsden,et al.  Discrete mechanics and optimal control for constrained systems , 2010 .

[120]  Li-Qun Chen,et al.  Second-order sensitivity analysis of multibody systems described by differentialz/algebraic equations: adjoint variable approach , 2008, Int. J. Comput. Math..

[121]  Guang Dong,et al.  Topology Optimization for Multi-Functional Components in Multibody Dynamics Systems. , 2012 .

[122]  Ramana V. Grandhi,et al.  A survey of structural and multidisciplinary continuum topology optimization: post 2000 , 2014 .

[123]  Robert Seifried,et al.  Two approaches for feedforward control and optimal design of underactuated multibody systems , 2012 .

[124]  Olivier A. Bauchau,et al.  Flexible multibody dynamics , 2010 .

[125]  R. L. Fox,et al.  Structural optimization in the dynamics response regime - A computational approach , 1970 .

[126]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[127]  Karim Sherif,et al.  Efficient Topology Optimization of Large Dynamic Finite Element Systems Using Fatigue , 2010 .

[128]  Peter Eberhard,et al.  Topology Optimized Synthesis of Planar Kinematic Rigid Body Mechanisms , 2009 .

[129]  N. K. Mani,et al.  Analysis and Optimal Design of Spatial Mechanical Systems , 1990 .

[130]  Peter Eberhard,et al.  Sensitivity analysis for dynamic mechanical systems with finite rotations , 2008 .

[131]  Haiyan Hu,et al.  Structural optimization of flexible components in a flexible multibody system modeled via ANCF , 2016 .

[132]  D. Tortorelli,et al.  Design sensitivity analysis: Overview and review , 1994 .

[133]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[134]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[135]  Bion L. Pierson,et al.  A survey of optimal structural design under dynamic constraints , 1972 .