Mass balance of the Greenland Ice Sheet from 1992 to 2018

Eric Rignot | Bernd Scheuchl | Marcus E. Engdahl | Helmut Rott | Thomas Nagler | Xavier Fettweis | Himanshu Save | Ingo Sasgen | Ian Joughin | Ben Smith | Jan Wuite | Daniele Melini | Sebastian B. Simonsen | Roelof Rietbroek | Ki-Weon Seo | Alex Gardner | Philip Moore | Ruth Mottram | Andreas Groh | Martin Horwath | Bert Wouters | Jeremie Mouginot | Veit Helm | Isabella Velicogna | Bramha Dutt Vishwakarma | Gerhard Krinner | Hannes Konrad | Malcolm McMillan | Brian Gunter | Scott Luthcke | Johan Nilsson | Alejandro Blazquez | Noel Gourmelen | Ines Otosaka | Rene Forsberg | Giorgio Spada | Valentina R. Barletta | Lev Tarasov | Erik Ivins | Alexander Horvath | William Colgan | Anna E. Hogg | Tony Payne | Alan Muir | Denis Felikson | Sophie Nowicki | Andrew Shepherd | Beata Csatho | David Wiese | Bryant Loomis | Yara Mohajerani | I. Sasgen | R. Rietbroek | S. Nowicki | Edward Hanna | X. Fettweis | E. Ivins | B. Smith | P. Whitehouse | M. R. van den Broeke | W. Peltier | B. Scheuchl | D. Wilton | H. Rott | T. Scambos | G. Krinner | E. Schrama | B. Gunter | I. Joughin | B. D. Vishwakarma | M. Engdahl | B. Csathó | H. Save | K. Seo | A. Gardner | R. Forsberg | T. Nagler | A. Shepherd | N. Gourmelen | A. Muir | W. J. van de Berg | P. Moore | A. Blazquez | H. Gallée | K. Briggs | E. Rignot | G. Spada | V. Barletta | L. Tarasov | B. Wouters | M. Talpe | N. Schlegel | S. Luthcke | R. Cullather | W. Colgan | S. Mernild | I. Velicogna | V. Helm | A. Groh | J. Mouginot | R. Mottram | T. Payne | L. Schröder | D. Melini | C. Agosta | H. Konrad | Lin Gilbert | A. Hogg | M. McMillan | T. Slater | D. Wiese | C. Harig | J. Nilsson | G. Nield | N. Pie | S. Khan | B. Loomis | M. Horwath | J. Bonin | A. Ahlstrøm | B. Noël | K. Kjeldsen | A. Bjørk | P. Langen | W. Richard Peltier | G. A | T. Sutterley | Melchior van Wessem | S. Simonsen | D. Felikson | Anders A. Bjørk | Michiel van den Broeke | Brice Noël | Ernst Schrama | Cécile Agosta | Ben E. Smith | Richard Cullather | Sebastian Mernild | J. Wuite | G. Babonis | A. Horvath | B. Lecavalier | Yara Mohajerani | G. Moyano | I. Otosaka | Mark E. Pattle | Pippa Whitehouse | Kate Briggs | Ted Scambos | Nicole Schlegel | Andreas Ahlstrøm | Greg Babonis | Jennifer Bonin | Hubert Gallee | Lin Gilbert | Edward Hanna | Christopher Harig | Shfaqat Khan | Kristian K. Kjeldsen | Benoit Lecavalier | Gorka Moyano | Grace Nield | Ludwig Schröder | Tyler Sutterley | Matthieu Talpe | Thomas Slater | Willem Jan van de Berg | Peter L. Langen | Andrew Erik Eric Ben Michiel Isabella Pippa Kate Ian Gerh Shepherd Ivins Rignot Smith van den Broeke | L. Sandberg Sørensen | W. van der Wal | T. Wagner | Geruo A | Nadège Pie | Louise Sandberg Sørensen | Wouter van der Wal | Melchior van Wessem | David Wilton | Thomas Wagner | Cécile Agosta | Inès N. Otosaka | H. Gallee | B. Vishwakarma | The Imbie Team

[1]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[2]  Marcus E. Engdahl,et al.  Trends in Antarctic Ice Sheet Elevation and Mass , 2019, Geophysical research letters.

[3]  S. S. Kristensen,et al.  Greenland ice sheet mass balance assessed by PROMICE (1995–2015) , 2019, Geological Survey of Denmark and Greenland Bulletin.

[4]  Eric Rignot,et al.  Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018 , 2019, Proceedings of the National Academy of Sciences.

[5]  Delwyn Moller,et al.  Interruption of two decades of Jakobshavn Isbrae acceleration and thinning as regional ocean cools , 2019, Nature Geoscience.

[6]  Michael Bevis,et al.  Accelerating changes in ice mass within Greenland, and the ice sheet’s sensitivity to atmospheric forcing , 2019, Proceedings of the National Academy of Sciences.

[7]  M. R. van den Broeke,et al.  Seasonal to decadal variability in ice discharge from the Greenland Ice Sheet. , 2018, The cryosphere.

[8]  X. Fettweis,et al.  Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming , 2018, Nature.

[9]  S. Nowicki,et al.  The Greenland and Antarctic ice sheets under 1.5 °C global warming , 2018, Nature Climate Change.

[10]  Eric Rignot,et al.  Global sea-level budget 1993–present , 2018, Earth System Science Data.

[11]  Marcus E. Engdahl,et al.  25 years of elevation changes of the Greenland Ice Sheet from ERS, Envisat, and CryoSat-2 radar altimetry , 2018 .

[12]  A. Cazenave,et al.  Exploring the uncertainty in GRACE estimates of the mass redistributions at the Earth surface: implications for the global water and sea level budgets , 2018, Geophysical Journal International.

[13]  Robin E. Bell,et al.  Identifying Spatial Variability in Greenland's Outlet Glacier Response to Ocean Heat , 2018, Front. Earth Sci..

[14]  B. Smith,et al.  Greenland Ice Mapping Project: Ice Flow Velocity Variation at sub-monthly to decadal time scales. , 2018, The cryosphere.

[15]  Ian Joughin,et al.  Ice velocity of Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ Isstrøm, 2015–2017, from Sentinel 1-a/b SAR imagery , 2018, The Cryosphere.

[16]  Eric Rignot,et al.  Mass balance of the Antarctic Ice Sheet from 1992 to 2017 , 2018, Nature.

[17]  A. Muir,et al.  CryoSat-2 swath interferometric altimetry for mapping ice elevation and elevation change , 2017, Advances in Space Research.

[18]  L Mayer,et al.  BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation , 2017, Geophysical research letters.

[19]  Nico Sneeuw,et al.  A Data‐Driven Approach for Repairing the Hydrological Catchment Signal Damage Due to Filtering of GRACE Products , 2017 .

[20]  S. Lhermitte,et al.  Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 2: Antarctica (1979–2016) , 2017 .

[21]  S. Lhermitte,et al.  Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 1: Greenland (1958–2016) , 2017 .

[22]  S. Nowicki,et al.  Improvements in ice-sheet sea-level projections , 2017 .

[23]  Bob E. Schutz,et al.  Comparison of Elevation Change Detection Methods From ICESat Altimetry Over the Greenland Ice Sheet , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Bin Zhao,et al.  The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). , 2017, Journal of climate.

[25]  X. Fettweis,et al.  Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet , 2017, Science Advances.

[26]  L. Metivier,et al.  Inverting Glacial Isostatic Adjustment signal using Bayesian framework and two linearly relaxing rheologies , 2017 .

[27]  Bernd Scheuchl,et al.  Comprehensive Annual Ice Sheet Velocity Mapping Using Landsat-8, Sentinel-1, and RADARSAT-2 Data , 2017, Remote. Sens..

[28]  David J. Harding,et al.  The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation , 2017 .

[29]  X. Fettweis,et al.  High resolution (1 km) positive degree-day modelling of Greenland ice sheet surface mass balance, 1870-2012 using reanalysis data , 2017 .

[30]  Baptiste Vandecrux,et al.  Liquid Water Flow and Retention on the Greenland Ice Sheet in the Regional Climate Model HIRHAM5: Local and Large-Scale Impacts , 2017, Front. Earth Sci..

[31]  Louise Sørensen,et al.  Greenland and Antarctica Ice Sheet Mass Changes and Effects on Global Sea Level , 2017, Surveys in Geophysics.

[32]  A. Gardner,et al.  Improved retrieval of land ice topography from CryoSat-2 data and its impact for volume-change estimation of the Greenland Ice Sheet , 2016 .

[33]  Xavier Fettweis,et al.  Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model , 2016 .

[34]  Pavel Ditmar,et al.  Optimizing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models , 2016 .

[35]  X. Fettweis,et al.  A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958–2015) , 2016 .

[36]  Srinivas Bettadpur,et al.  High‐resolution CSR GRACE RL05 mascons , 2016 .

[37]  Yannice Faugère,et al.  DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20years , 2016 .

[38]  M. Watkins,et al.  Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution , 2016 .

[39]  I. Sasgen,et al.  Geodetic measurements reveal similarities between post–Last Glacial Maximum and present-day mass loss from the Greenland ice sheet , 2016, Science Advances.

[40]  Willem Jan van de Berg,et al.  A high‐resolution record of Greenland mass balance , 2016 .

[41]  Andreas Groh,et al.  The method of tailored sensitivity kernels for GRACE mass change estimates , 2016 .

[42]  Frank Flechtner,et al.  What Can be Expected from the GRACE-FO Laser Ranging Interferometer for Earth Science Applications? , 2016, Surveys in Geophysics.

[43]  Reinhard Dietrich,et al.  A processing system to monitor Greenland outlet glacier velocity variations at decadal and seasonal time scales utilizing the Landsat imagery , 2015 .

[44]  M. Morlighem,et al.  Subglacial lake drainage detected beneath the Greenland ice sheet , 2015, Nature Communications.

[45]  R. S. W. van de Wal,et al.  Evaluation of the updated regional climate model RACMO2.3: summer snowfall impact on the Greenland Ice Sheet , 2015 .

[46]  Helmut Rott,et al.  The Sentinel-1 Mission: New Opportunities for Ice Sheet Observations , 2015, Remote. Sens..

[47]  T. Scambos,et al.  Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003–2013 , 2015, Journal of geophysical research. Solid earth.

[48]  W. Peltier,et al.  Space geodesy constrains ice age terminal deglaciation: The global ICE‐6G_C (VM5a) model , 2015 .

[49]  Kyle Duncan,et al.  Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics , 2014, Proceedings of the National Academy of Sciences.

[50]  Z. Martinec,et al.  The rotational feedback on linear-momentum balance in glacial isostatic adjustment , 2014 .

[51]  Isabella Velicogna,et al.  Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time‐variable gravity data , 2014 .

[52]  P. Clark,et al.  Closing the sea level budget at the Last Glacial Maximum , 2014, Proceedings of the National Academy of Sciences.

[53]  Philippe Huybrechts,et al.  A model of Greenland ice sheet deglaciation constrained by observations of relative sea level and ice extent , 2014 .

[54]  K. Lambeck,et al.  Sea level and global ice volumes from the Last Glacial Maximum to the Holocene , 2014, Proceedings of the National Academy of Sciences.

[55]  Angelika Humbert,et al.  Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2 , 2014 .

[56]  R. Rietbroek,et al.  Key Points: @bullet Consistent Method for Estimating Mass Balances from Grace @bullet Mascon Technique @bullet Evaluate Systematic Errors Gia Correction a Mascon Approach to Assess Ice Sheet and Glacier Mass Balances and Their Uncertainties from Grace Data , 2022 .

[57]  M. Bevis,et al.  Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming , 2014 .

[58]  E. Meijgaard,et al.  Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica , 2014 .

[59]  P. Heimbach,et al.  North Atlantic warming and the retreat of Greenland's outlet glaciers , 2013, Nature.

[60]  Myoung-Jong Noh,et al.  An improved mass budget for the Greenland ice sheet , 2013 .

[61]  Ingo Sasgen,et al.  Limits in detecting acceleration of ice sheet mass loss due to climate variability , 2013 .

[62]  J. Camp,et al.  Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution , 2013, Journal of Glaciology.

[63]  Olga Didova,et al.  Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change , 2013, The Cryosphere.

[64]  M. Balmaseda,et al.  Evaluation of the ECMWF ocean reanalysis system ORAS4 , 2013 .

[65]  D. Chambers,et al.  Uncertainty estimates of a GRACE inversion modelling technique over Greenland using a simulation , 2013 .

[66]  Frank Flechtner,et al.  Simulating high‐frequency atmosphere‐ocean mass variability for dealiasing of satellite gravity observations: AOD1B RL05 , 2013 .

[67]  E. Ivins,et al.  Antarctic contribution to sea level rise observed by GRACE with improved GIA correction , 2013 .

[68]  Nico Mölg,et al.  Mass loss of Greenland's glaciers and ice caps 2003–2008 revealed from ICESat laser altimetry data , 2013 .

[69]  J. Wahr,et al.  Improved ice loss estimate of the northwestern Greenland ice sheet , 2013 .

[70]  M. Cheng,et al.  Deceleration in the Earth's oblateness , 2013 .

[71]  J. Wahr,et al.  Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada , 2012 .

[72]  Eric Rignot,et al.  A Reconciled Estimate of Ice-Sheet Mass Balance , 2012, Science.

[73]  F. Simons,et al.  Mapping Greenland’s mass loss in space and time , 2012, Proceedings of the National Academy of Sciences.

[74]  K. Steffen,et al.  Recent warming in Greenland in a long-term instrumental (1881–2012) climatic context: I. Evaluation of surface air temperature records , 2012 .

[75]  Bo Sun,et al.  Bedmap2: improved ice bed, surface and thickness datasets for Antarctica , 2012 .

[76]  X. Fettweis,et al.  Brief communication "Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet" , 2012 .

[77]  Xavier Fettweis,et al.  Surface mass balance model intercomparison for the Greenland ice sheet , 2012 .

[78]  Xavier Fettweis,et al.  Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR , 2012 .

[79]  Eric Rignot,et al.  Ice flow in Greenland for the International Polar Year 2008–2009 , 2012 .

[80]  J. Christensen,et al.  Very high resolution regional climate model simulations over Greenland: Identifying added value , 2012 .

[81]  I. Joughin,et al.  21st-Century Evolution of Greenland Outlet Glacier Velocities , 2011, Science.

[82]  Z. Martinec,et al.  Contribution of glacial-isostatic adjustment to the geocenter motion , 2011 .

[83]  B. Scheuchl,et al.  Ice Flow of the Antarctic Ice Sheet , 2011, Science.

[84]  Martin O'Leary,et al.  Ocean forcing of the Greenland Ice Sheet: Calving fronts and patterns of retreat identified by automatic satellite monitoring of eastern outlet glaciers , 2011 .

[85]  Eric Rignot,et al.  Antarctic grounding line mapping from differential satellite radar interferometry , 2011 .

[86]  Sebastian B. Simonsen,et al.  Mass balance of the Greenland ice sheet (2003–2008) from ICESat data – the impact of interpolation, sampling and firn density , 2011 .

[87]  Ian M. Howat,et al.  Greenland flow variability from ice-sheet-wide velocity mapping , 2010, Journal of Glaciology.

[88]  G. Liston,et al.  Greenland Ice Sheet Surface Mass-Balance Modeling in a 131-Yr Perspective, 1950–2080 , 2010 .

[89]  M. R. van den Broeke,et al.  Partitioning Recent Greenland Mass Loss , 2009, Science.

[90]  D. Vaughan,et al.  Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets , 2009, Nature.

[91]  G. Milne,et al.  Calibrating a glaciological model of the Greenland ice sheet from the Last Glacial Maximum to present-day using field observations of relative sea level and ice extent , 2009 .

[92]  M. R. van den Broeke,et al.  Higher surface mass balance of the Greenland ice sheet revealed by high‐resolution climate modeling , 2009 .

[93]  Ian M. Howat,et al.  Continued evolution of Jakobshavn Isbrae following its rapid speedup , 2008 .

[94]  T. Lee,et al.  ECCO2: High Resolution Global Ocean and Sea Ice Data Synthesis , 2008 .

[95]  David M. Holland,et al.  Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters , 2008 .

[96]  D. Chambers,et al.  Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output , 2008 .

[97]  Ian M. Howat,et al.  Ice-front variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland , 2008 .

[98]  Eric Rignot,et al.  Recent Antarctic ice mass loss from radar interferometry and regional climate modelling , 2008 .

[99]  Archie Paulson,et al.  FAST TRACK PAPER: Inference of mantle viscosity from GRACE and relative sea level data , 2007 .

[100]  R. Nerem,et al.  Recent Greenland Ice Mass Loss by Drainage System from Satellite Gravity Observations , 2006, Science.

[101]  E. Rignot,et al.  Changes in the Velocity Structure of the Greenland Ice Sheet , 2006, Science.

[102]  E. Ivins,et al.  Antarctic glacial isostatic adjustment: a new assessment , 2005, Antarctic Science.

[103]  Isabella Velicogna,et al.  Greenland mass balance from GRACE , 2005 .

[104]  Ian Joughin,et al.  Large fluctuations in speed on Greenland's Jakobshavn Isbræ glacier , 2004, Nature.

[105]  K. Lambeck,et al.  Constraints on the Greenland Ice Sheet since the Last Glacial Maximum from sea-level observations and glacial-rebound models , 2004 .

[106]  W. Peltier GLOBAL GLACIAL ISOSTASY AND THE SURFACE OF THE ICE-AGE EARTH: The ICE-5G (VM2) Model and GRACE , 2004 .

[107]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[108]  Florent Lyard,et al.  Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing ‐ comparisons with observations , 2003 .

[109]  P. Döll,et al.  A global hydrological model for deriving water availability indicators: model tuning and validation , 2003 .

[110]  J. Legarsky,et al.  Coherent radar ice thickness measurements over the Greenland ice sheet , 2001 .

[111]  Duncan J. Wingham,et al.  A method of combining ICESat and GRACE satellite data to constrain Antarctic mass balance , 2000 .

[112]  Z. Martinec Spectral–finite element approach to three‐dimensional viscoelastic relaxation in a spherical earth , 2000 .

[113]  J G Marsh,et al.  Growth of Greenland Ice Sheet: Measurement , 1989, Science.

[114]  Yannice Faugère,et al.  DUACS DT 2014 : the new multi-mission altimeter data set reprocessed over 20 years , 2016 .

[115]  Ian M. Howat,et al.  Supraglacial lakes on the Greenland ice sheet advance inland under warming climate , 2015 .

[116]  Steen Savstrup Kristensen,et al.  Basin-scale partitioning of Greenland ice sheet mass balance components (2007–2011) , 2015 .

[117]  Matt A. King,et al.  Incomplete separability of Antarctic plate rotation from glacial isostatic adjustment deformation within geodetic observations , 2015 .

[118]  Matt A. King,et al.  Mass change from GRACE: a simulated comparison of Level-1B analysis techniques , 2014 .

[119]  Alun Hubbard,et al.  The response of Petermann Glacier, Greenland, to large calving events, and its future stability in the context of atmospheric and oceanic warming , 2012 .

[120]  Jack L. Saba,et al.  Greenland ice sheet mass balance: distribution of increased mass loss with climate warming; 2003–07 versus 1992–2002 , 2011, Journal of Glaciology.

[121]  Ian M. Howat,et al.  Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000–06: ice dynamics and coupling to climate , 2008 .