Local Synthesis of Carbon Nanotubes in Silicon Microsystems: The Effect of Temperature Distribution on Growth Structure

Local synthesis and direct integration of carbon nanotubes (CNTs) into microsystems is a promising method for producing CNT-based devices in a single step, low-cost, and wafer-level, CMOS/MEMS-compatible process. In this report, the structure of the locally grown CNTs are studied by transmission imaging in scanning electron microscopy—S(T)EM. The characterization is performed directly on the microsystem, without any post-synthesis processing required. The results show an effect of temperature on the structure of CNTs: high temperature favors thin and regular structures, whereas low temperature favors “bamboo-like" structures.

[1]  Malcolm L. H. Green,et al.  High-resolution electron microscopy of tubule-containing graphitic carbon , 1993 .

[2]  Steven G. Louie,et al.  Fully collapsed carbon nanotubes , 1995, Nature.

[3]  Yahachi Saito,et al.  Nanoparticles and filled nanocapsules , 1995 .

[4]  L. Bursill,et al.  Cross-sectional high-resolution transmission electron microscopy study of the structures of carbon nanotubes , 1995 .

[5]  S. Xie,et al.  Large-Scale Synthesis of Aligned Carbon Nanotubes , 1996, Science.

[6]  W. Goddard,et al.  Structural Modification of Single-Layer Carbon Nanotubes with an Electron Beam , 1996 .

[7]  J. P. Zhang,et al.  Controlled production of aligned-nanotube bundles , 1997, Nature.

[8]  V. Kovalevski,et al.  Pyrolysis of hollow carbons on melted catalyst , 1998 .

[9]  M. Siegal,et al.  Synthesis of large arrays of well-aligned carbon nanotubes on glass , 1998, Science.

[10]  H. Dai,et al.  Self-oriented regular arrays of carbon nanotubes and their field emission properties , 1999, Science.

[11]  A. Rao,et al.  Continuous production of aligned carbon nanotubes: a step closer to commercial realization , 1999 .

[12]  W. Henley,et al.  Diffusion of iron in silicon dioxide , 1999 .

[13]  O. Zhou,et al.  Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition , 2000 .

[14]  Jeunghee Park,et al.  Temperature effect on the growth of carbon nanotubes using thermal chemical vapor deposition , 2001 .

[15]  J. Wen,et al.  Effect of gas pressure on the growth and structure of carbon nanotubes by chemical vapor deposition , 2001 .

[16]  Ji Liang,et al.  An effective way to lower catalyst content in well-aligned carbon nanotube films , 2001 .

[17]  Liwei Lin,et al.  Room temperature local synthesis of carbon nanotubes , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[18]  Liwei Lin,et al.  Local synthesis of silicon nanowires and carbon nanotubes on microbridges , 2003 .

[19]  Jose Maria Kenny,et al.  NO2 gas sensitivity of carbon nanotubes obtained by plasma enhanced chemical vapor deposition , 2003 .

[20]  D. K. Brock,et al.  Carbon Nanotube Based Memory Using CMOS Production Techniques , 2006, 2006 IEEE Compound Semiconductor Integrated Circuit Symposium.

[21]  Alexander Star,et al.  Gas sensor array based on metal-decorated carbon nanotubes. , 2006, The journal of physical chemistry. B.

[22]  A. Rinzler,et al.  An Integrated Logic Circuit Assembled on a Single Carbon Nanotube , 2006, Science.

[23]  E. Mendoza,et al.  Effect of the nanostructure and surface chemistry on the gas adsorption properties of macroscopic multiwalled carbon nanotube ropes , 2007 .

[24]  The integration of nanowires and nanotubes with microstructures , 2009 .

[25]  C. Jacob,et al.  Effect of growth temperature on the CVD grown Fe filled multi-walled carbon nanotubes using a modified photoresist , 2010, 2004.12834.

[26]  Philip G. Collins,et al.  Hydrogen sensing and sensitivity of palladium-decorated single-walled carbon nanotubes with defects. , 2010, Nano letters.

[27]  Mukul Kumar,et al.  Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. , 2010, Journal of nanoscience and nanotechnology.

[28]  E. Halvorsen,et al.  Electrical control of synthesis conditions for locally grown CNTs on polysilicon microstructure , 2011, 2011 11th IEEE International Conference on Nanotechnology.

[29]  O. Englander,et al.  Germanium nanowire synthesis using a localized heat source and a comparison to synthesis in a uniform temperature environment , 2011 .

[30]  Knut E. Aasmundtveit,et al.  Direct integration of carbon nanotubes in Si microstructures , 2012 .

[31]  Knut E. Aasmundtveit,et al.  Diameter dependency for the electric-field-assisted growth of carbon nanotubes , 2013 .

[32]  Knut E. Aasmundtveit,et al.  Integration of Carbon Nanotubes in Microsystems: Local Growth and Electrical Properties of Contacts , 2013, Materials.