Submodular maximization meets streaming: matchings, matroids, and more

We study the problem of finding a maximum matching in a graph given by an input stream listing its edges in some arbitrary order, where the quantity to be maximized is given by a monotone submodular function on subsets of edges. This problem, which we call maximum submodular-function matching (MSM), is a natural generalization of maximum weight matching (MWM). We give two incomparable algorithms for this problem with space usage falling in the semi-streaming range—they store only O(n) edges, using O(nlogn) working memory—that achieve approximation ratios of 7.75 in a single pass and (3 + e) in O(e − 3) passes respectively. The operations of these algorithms mimic those of known MWM algorithms. We identify a general framework that allows this kind of adaptation to a broader setting of constrained submodular maximization.

[1]  Jan Vondrák,et al.  Submodular Maximization over Multiple Matroids via Generalized Exchange Properties , 2009, Math. Oper. Res..

[2]  Ashish Goel,et al.  On the communication and streaming complexity of maximum bipartite matching , 2012, SODA.

[3]  Kurt Mehlhorn,et al.  Proceedings of the 39th international colloquium conference on Automata, Languages, and Programming - Volume Part II , 2012, ICALP 2012.

[4]  Vahab S. Mirrokni,et al.  Non-monotone submodular maximization under matroid and knapsack constraints , 2009, STOC '09.

[5]  Amit Chakrabarti,et al.  Submodular maximization meets streaming: matchings, matroids, and more , 2015, Math. Program..

[6]  Joan Feigenbaum,et al.  On graph problems in a semi-streaming model , 2005, Theor. Comput. Sci..

[7]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[8]  Richard M. Karp,et al.  An optimal algorithm for on-line bipartite matching , 1990, STOC '90.

[9]  Mikhail Kapralov,et al.  Better bounds for matchings in the streaming model , 2012, SODA.

[10]  Leah Epstein,et al.  Improved Approximation Guarantees for Weighted Matching in the Semi-streaming Model , 2009, SIAM J. Discret. Math..

[11]  Jan Vondrák,et al.  Fast algorithms for maximizing submodular functions , 2014, SODA.

[12]  Ashwinkumar Badanidiyuru,et al.  Buyback Problem - Approximate Matroid Intersection with Cancellation Costs , 2010, ICALP.

[13]  ZVI GALIL,et al.  Efficient algorithms for finding maximum matching in graphs , 1986, CSUR.

[14]  Andrew McGregor,et al.  Finding Graph Matchings in Data Streams , 2005, APPROX-RANDOM.

[15]  Laurence A. Wolsey,et al.  Best Algorithms for Approximating the Maximum of a Submodular Set Function , 1978, Math. Oper. Res..

[16]  Jan Vondrák,et al.  Maximizing a Monotone Submodular Function Subject to a Matroid Constraint , 2011, SIAM J. Comput..

[17]  Mariano Zelke,et al.  Weighted Matching in the Semi-Streaming Model , 2007, Algorithmica.

[18]  Ashwinkumar Badanidiyuru Varadaraja Buyback problem: approximate matroid intersection with cancellation costs , 2011, ICALP 2011.

[19]  Hui Lin,et al.  Word Alignment via Submodular Maximization over Matroids , 2011, ACL.

[20]  Joseph Naor,et al.  Improved Approximations for k-Exchange Systems - (Extended Abstract) , 2011, ESA.

[21]  Sudipto Guha,et al.  Linear programming in the semi-streaming model with application to the maximum matching problem , 2011, Inf. Comput..

[22]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..