Enhanced hydrothermal conversion of surfactant-modified diatom microshells into barium titanate replicas

The three-dimensional nanostructured SiO_2-based microshells of diatoms have been converted into nanocrystalline BaTiO_3 via a series of shape-preserving reactions. The microshells, obtained as diatomaceous earth, were first exposed to a surfactant-induced dissolution/reprecipitation process [C.E. Fowler, et al., Chem. Phys. Lett. 398 , 414 (2004)] to enhance the microshell surface area, without altering the microshell shape. The SiO_2 microshells were then converted into anatase TiO_2 replicas via reaction with TiF_4 gas and then humid oxygen. Hydrothermal reaction with a barium hydroxide-bearing solution then yielded three-dimensional nanocrystalline microshell replicas composed of BaTiO_3. The enhanced surface area of the surfactant-treated microshells resulted in faster conversion into phase-pure BaTiO_3 at 100 °C.

[1]  K. Sandhage,et al.  3‐D Microparticles of BaTiO3 and Zn2SiO4 Via the Chemical (Sol‐Gel, Acetate, or Hydrothermal) Conversion of Biological (Diatom) Templates , 2008 .

[2]  M. Akinc,et al.  Conversion of SiO2 Diatom Frustules to BaTiO3 and SrTiO3 , 2006 .

[3]  J. S. Lee,et al.  Surfactant-free hydrothermal synthesis of highly tetragonal barium titanate nanowires: a structural investigation. , 2006, The journal of physical chemistry. B.

[4]  Hiroshi Nakamura,et al.  Preparation of Hollow BaTiO3 and Anatase Spheres by the Layer‐by‐Layer Colloidal Templating Method , 2006 .

[5]  Jianbo Wang,et al.  Polymer-assisted synthesis of BaTiO3 nanorods , 2006 .

[6]  K. Sandhage,et al.  Three‐Dimensional Assemblies of Zirconia Nanocrystals Via Shape‐Preserving Reactive Conversion of Diatom Microshells , 2006 .

[7]  K. Sandhage,et al.  Phosphor microparticles of controlled three-dimensional shape from phytoplankton , 2006 .

[8]  Steve Weiner,et al.  Mollusk shell formation: a source of new concepts for understanding biomineralization processes. , 2006, Chemistry.

[9]  R. Waser,et al.  Progress in the Synthesis of Nanocrystalline BaTiO3 Powders for MLCC , 2005 .

[10]  K. Sandhage,et al.  Zn2SiO4‐coated microparticles with biologically‐controlled 3D shapes , 2005 .

[11]  J. Aizenberg,et al.  Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale , 2005, Science.

[12]  Christopher S. Gaddis,et al.  Merging Biological Self-Assembly with Synthetic Chemical Tailoring: The Potential for 3-D Genetically Engineered Micro/Nano-Devices (3-D GEMS) , 2005 .

[13]  K. Sandhage,et al.  Three‐Dimensional Magnesia‐Based Nanocrystal Assemblies Via Low‐Temperature Magnesiothermic Reaction of Diatom Microshells , 2005 .

[14]  M. Kuwabara,et al.  Photoluminescence and its Enhancement of Pr3+-Doped BaTiO3 Phosphor , 2005 .

[15]  Christopher S. Gaddis,et al.  Free-standing microscale structures of nanocrystalline zirconia with biologically replicable three-dimensional shapes , 2005 .

[16]  Yu‐Wen Chen,et al.  Preparation of monodispersed spherical barium titanate particles , 2005 .

[17]  Jae Young Lee,et al.  Uniform Coating of Nanometer‐Scale BaTiO3 Layer on Spherical Ni Particles via Hydrothermal Conversion of Ti‐Hydroxide , 2005 .

[18]  K. Sandhage,et al.  Sol-gel synthesis on self-replicating single-cell scaffolds: applying complex chemistries to nature's 3-D nanostructured templates. , 2005, Chemical communications.

[19]  B. Lebeau,et al.  Mesoporosity in diatoms via surfactant induced silica rearrangement , 2004 .

[20]  Chad A Mirkin,et al.  Control of nanoparticle assembly by using DNA-modified diatom templates. , 2004, Angewandte Chemie.

[21]  Christopher S. Gaddis,et al.  Freestanding microscale 3D polymeric structures with biologically-derived shapes and nanoscale features , 2004 .

[22]  Ryan T. Turgeon,et al.  Multistep, low-temperature pseudomorphic transformations of nanostructured silica to titania via a titanium oxyfluoride intermediate , 2004 .

[23]  Glauco S. Maciel,et al.  Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor , 2004 .

[24]  K. Sandhage,et al.  Anatase assemblies from algae: coupling biological self-assembly of 3-D nanoparticle structures with synthetic reaction chemistry. , 2004, Chemical communications.

[25]  B. Stojanovic Mechanochemical synthesis of ceramic powders with perovskite structure , 2003 .

[26]  N. Padture,et al.  Hydrothermal Synthesis of Thin Films of Barium Titanate Ceramic Nano‐Tubes at 200°C , 2003 .

[27]  Ralf B. Wehrspohn,et al.  Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate , 2003 .

[28]  H. Kakemoto,et al.  Preparation of nm-sized BaO3 particles using a new 2-step thermal decomposition of barium titanyl oxalate , 2003 .

[29]  Zilong Tang,et al.  Low-temperature combustion synthesis and characterization of nanosized tetragonal barium titanate powders , 2003 .

[30]  Edmund Bäuerlein,et al.  Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures. , 2003, Angewandte Chemie.

[31]  Jean-Michel Robert,et al.  Diatom cultivation and biotechnologically relevant products. Part I: Cultivation at various scales , 2003, Applied Microbiology and Biotechnology.

[32]  Jing Wang,et al.  Properties of a nanocrystalline barium titanate on silicon humidity sensor , 2003 .

[33]  J. Young,et al.  Biomineralization within vesicles: The calcite of coccoliths , 2003 .

[34]  Yajun Wang,et al.  Zeolitization of diatomite to prepare hierarchical porous zeolite materials through a vapor-phase transport process , 2002 .

[35]  Matthew B. Dickerson,et al.  Novel, Bioclastic Route to Self‐Assembled, 3D, Chemically Tailored Meso/Nanostructures: Shape‐Preserving Reactive Conversion of Biosilica (Diatom) Microshells , 2002 .

[36]  D. Hennings,et al.  Solid‐State Preparation of BaTiO3‐Based Dielectrics, Using Ultrafine Raw Materials , 2001 .

[37]  C. Murray,et al.  Synthesis of monodisperse nanoparticles of barium titanate: toward a generalized strategy of oxide nanoparticle synthesis. , 2001, Journal of the American Chemical Society.

[38]  Paul Mulvaney,et al.  NANOSTRUCTURE OF THE DIATOM FRUSTULE AS REVEALED BY ATOMIC FORCE AND SCANNING ELECTRON MICROSCOPY , 2001 .

[39]  Amir Tork,et al.  XPS and RBS analysis of the composition and structure of barium titanate thin films to be used in DRAMs , 2001, IS&T/SPIE Electronic Imaging.

[40]  G. Wang,et al.  Giant capacitance effect and physical model of nano crystalline CuO–BaTiO3 semiconductor as a CO2 gas sensor , 2000 .

[41]  Michael W. Anderson,et al.  Hierarchical Pore Structures through Diatom Zeolitization , 2000 .

[42]  Tong Zhang,et al.  Improvement of nanocrystalline BaTiO3 humidity sensing properties , 2000 .

[43]  E. A. Payzant,et al.  Wet-chemical synthesis of monodispersed barium titanate particles — hydrothermal conversion of TiO2 microspheres to nanocrystalline BaTiO3 , 2000 .

[44]  T. Shiosaki,et al.  Preparation of BaTiO3 ultrafine particles by micro-emulsion charring method , 1999 .

[45]  M. Leoni,et al.  Effect of humidity on the electrical response of porous BaTiO3 ceramics , 1999 .

[46]  Young,et al.  Coccolith ultrastructure and biomineralisation , 1999, Journal of structural biology.

[47]  R. B. Frankel,et al.  Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications , 1999, Applied Microbiology and Biotechnology.

[48]  G. Haertling Ferroelectric ceramics : History and technology , 1999 .

[49]  Harald Fischer,et al.  TARGETING AND COVALENT MODIFICATION OF CELL WALL AND MEMBRANE PROTEINS HETEROLOGOUSLY EXPRESSED IN THE DIATOM CYLINDROTHECA FUSIFORMIS (BACILLARIOPHYCEAE) , 1999 .

[50]  O Duerr Eirik,et al.  Cultured microalgae as aquaculture feeds , 1998 .

[51]  S. Akbar,et al.  Synthesis, Microstructure and Electrical Properties of Hydrothermally Prepared Ferroelectric BaTiO3 Thin Films , 1998 .

[52]  R. Riman,et al.  Kinetics and Mechanisms of Hydrothermal Synthesis of Barium Titanate , 1996 .

[53]  A. Grossman,et al.  Stable nuclear transformation of the diatomPhaeodactylum tricornutum , 1996, Molecular and General Genetics MGG.

[54]  David G. Mann,et al.  Biodiversity, biogeography and conservation of diatoms , 1996 .

[55]  Jörg-Uwe Meyer,et al.  A novel thick film conductive type CO2 sensor , 1996 .

[56]  T. Okada,et al.  Organic Vapor Sensitivity In A Porous Silicon Device , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[57]  David A. Payne,et al.  Nanocrystalline barium titanate: Evidence for the absence of ferroelectricity in sol‐gel derived thin‐layer capacitors , 1993 .

[58]  D. Pandey,et al.  Developments in ferroelectric ceramics for capacitor applications , 1992 .

[59]  E. Theriot,et al.  F. E. Round, R. M. Crawford, and D. G. Mann, The Diatoms. Biology and Morphology of the Genera , 1992 .

[60]  S. B. Deshpande,et al.  Low-temperature synthesis of ultrafine barium titanate (BaTiO3) using organometallic barium and titanium precursors , 1990 .

[61]  David G. Mann,et al.  Diatoms: Biology and Morphology of the Genera , 1990 .

[62]  W. Hertl Kinetics of Barium Titanate Synthesis , 1988 .

[63]  A. S. Braverman,et al.  Progress in Molecular and Subcellular Biology 3 , 1973, Progress in Molecular and Subcellular Biology.

[64]  E. Barrett,et al.  The Determination of Pore Volume and Area Distributions in Porous Substances. II. Comparison between Nitrogen Isotherm and Mercury Porosimeter Methods , 1951 .

[65]  Mark Hildebrand,et al.  Prospects of manipulating diatom silica nanostructure. , 2005, Journal of nanoscience and nanotechnology.

[66]  U. Nantes Diatom cultivation and biotechnologically relevant products. Part II: Current and putative products , 2003 .

[67]  R. Wetherbee,et al.  Components and control of silicification in diatoms. , 2003, Progress in molecular and subcellular biology.

[68]  A. Grossman,et al.  Stable nuclear transformation of the diatom , 1996 .

[69]  T. S. Srivatsan,et al.  Processing and fabrication of advanced materials III , 1994 .

[70]  A. Alles,et al.  Positive Temperature Coefficient of Resistivity Effect in Undoped, Atmospherically Reduced Barium Titanate , 1989 .

[71]  J. S. Machin,et al.  Thermal Stability of Titanium Dioxide , 1961, Nature.

[72]  E. Barrett,et al.  (CONTRIBUTION FROM THE MULTIPLE FELLOWSHIP OF BAUGH AND SONS COMPANY, MELLOX INSTITUTE) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms , 1951 .

[73]  T. Barrette,et al.  Calcitic microlenses as part of the photoreceptor system in brittlestars , 2022 .