Charge and spin coupling in copper compounds with hemilabile noninnocent ligands – Ambivalence in three dimensions
暂无分享,去创建一个
[1] W. Kaim,et al. Interacting metal and ligand based open shell systems: Challenges for experiment and theory , 2017 .
[2] C. Mukherjee,et al. Secondary Interactions versus Intramolecular π–π Interactions in CuII–Diradical Complexes , 2016 .
[3] W. Kaim,et al. Electronic, charge and magnetic interactions in three-centre systems , 2015 .
[4] W. Kaim,et al. Organometal coordination by purines: Semi-chelate bonding of modified guanine and isocaffeine with bis(diorganylphosphino)ferrocene–copper , 2015 .
[5] Ryan M. Young,et al. An allosteric photoredox catalyst inspired by photosynthetic machinery , 2015, Nature Communications.
[6] W. Kaim,et al. Coordinative Saturation of the Pterin Heterocycle by Ferrocenylcopper(I) Complex Fragments , 2015 .
[7] S. Mitra,et al. Switching and redox isomerism in first-row transition metal complexes containing redox active Schiff base ligands. , 2014, Dalton transactions.
[8] A. Ferraria,et al. Synthesis, characterization and study of the catalytic properties of Zn(II) camphor derived complexes , 2014 .
[9] W. Kaim,et al. Structure and Spectroelectrochemical Response of Arene–Ruthenium and Arene–Osmium Complexes with Potentially Hemilabile Noninnocent Ligands , 2014 .
[10] S. Mobin,et al. Electrochemical Evidence for Hemilabile Coordination of 1,3-Dimethyllumazine to [1,1′-Bis(diorganophosphino)ferrocene]copper(I) , 2014 .
[11] W. Kaim,et al. Correlated coordination and redox activity of a hemilabile noninnocent ligand in nickel complexes. , 2014, Chemistry.
[12] J. Klinman,et al. Intrigues and intricacies of the biosynthetic pathways for the enzymatic quinocofactors: PQQ, TTQ, CTQ, TPQ, and LTQ. , 2014, Chemical reviews.
[13] Soumava Biswas,et al. Effect of ligand substituent coordination on the geometry and the electronic structure of Cu(II)-diradical complexes. , 2014, Inorganic chemistry.
[14] A. Enders,et al. The Dipole Mediated Surface Chemistry of p-Benzoquinonemonoimine Zwitterions , 2013, Topics in Catalysis.
[15] M. Halcrow,et al. Jahn-Teller distortions in transition metal compounds, and their importance in functional molecular and inorganic materials. , 2013, Chemical Society reviews.
[16] W. Kaim,et al. Manifestations of noninnocent ligand behavior. , 2011, Inorganic chemistry.
[17] C. Su,et al. Coordination of a Hemilabile N,N,S Donor Ligand in the Redox System [CuL2]+/2+, L = 2‐Pyridyl‐N‐(2′‐alkylthiophenyl)methyleneimine , 2011 .
[18] W. Kaim,et al. Reversible Intramolecular Single-Electron Oxidative Addition Involving a Hemilabile Noninnocent Ligand , 2011 .
[19] W. Kaim,et al. Non-innocent ligands in bioinorganic chemistry—An overview , 2010 .
[20] J. Sauvage,et al. From Chemical Topology to Molecular Machines (Nobel Lecture). , 2017, Angewandte Chemie.
[21] A. Poddel’sky,et al. Transition metal complexes with bulky 4,6-di-tert-butyl-N-aryl(alkyl)-o-iminobenzoquinonato ligands: Structure, EPR and magnetism , 2009 .
[22] Joel S. Miller,et al. Oxidation führt zu Reduktion – redoxinduzierter Elektronentransfer (RIET) , 2009 .
[23] Joel S. Miller,et al. Oxidation leading to reduction: redox-induced electron transfer (RIET). , 2009, Angewandte Chemie.
[24] W. Kaim,et al. Stabilizing the elusive ortho-quinone/copper(I) oxidation state combination through pi/pi interaction in an isolated complex. , 2008, Journal of the American Chemical Society.
[25] John A. Weil,et al. Electron Paramagnetic Resonance , 2006 .
[26] P. Braunstein,et al. Tunable N-substitution in zwitterionic benzoquinonemonoimine derivatives: metal coordination, tandemlike synthesis of zwitterionic metal complexes, and supramolecular structures. , 2005, Chemistry.
[27] T. Schleid,et al. Dreispinsystem mit neuer Wendung: ein Bis(semichinonato)kupfer‐Komplex mit nichtplanarer Konfiguration am Kupfer(II)‐Zentrum , 2005 .
[28] F. Neese,et al. Molecular and electronic structure of four- and five-coordinate cobalt complexes containing two o-phenylenediamine- or two o-aminophenol-type ligands at various oxidation levels: an experimental, density functional, and correlated ab initio study. , 2004, Chemistry.
[29] W. Kaim,et al. First crystal structure determination and high-frequency EPR study of an organoarsanecopper radical complex , 2003 .
[30] F. Neese,et al. Analysis and interpretation of metal-radical coupling in a series of square planar nickel complexes: correlated Ab initio and density functional investigation of [Ni(L(ISQ))(2)] (L(ISQ)=3,5-di-tert-butyl-o-diiminobenzosemiquinonate(1-)). , 2003, Journal of the American Chemical Society.
[31] W. Kaim. The chemistry and biochemistry of the copper–radical interaction , 2003 .
[32] F. Neese,et al. Theoretical evidence for the singlet diradical character of square planar nickel complexes containing two o-semiquinonato type ligands. , 2002, Inorganic chemistry.
[33] A. Whalen,et al. Valence tautomerism and metal-mediated catechol oxidation for complexes of copper prepared with 9,10-phenanthrenequinone. , 2001, Inorganic chemistry.
[34] S. Batsanov,et al. Van der Waals Radii of Elements , 2001 .
[35] C. Pierpont. Studies on charge distribution and valence tautomerism in transition metal complexes of catecholate and semiquinonate ligands , 2001 .
[36] P. Braunstein,et al. Hemilabilität von Hybridliganden und die Koordinationschemie von Oxazolinliganden , 2001 .
[37] K. Wieghardt,et al. Electronic structure of bis(o-iminobenzosemiquinonato)metal complexes (Cu, Ni, Pd). The art of establishing physical oxidation states in transition-metal complexes containing radical ligands. , 2001, Journal of the American Chemical Society.
[38] M. Albrecht,et al. Sensitive Valence Tautomer Equilibrium of Paramagnetic Complexes [(L)Cun+(Qn−)] (n=1 or 2; Q=Quinones) Related to Amine Oxidase Enzymes , 1999 .
[39] Chad A. Mirkin,et al. Redoxschaltbare semilabile Terthienylliganden: polymere Übergangsmetallkomplexe mit elektrochemisch einstellbarer oder schaltbarer Koordinationssphäre? , 1999 .
[40] W. Kaim,et al. The First Crystal Structure of a Metal-Stabilized Tetrazine Anion Radical: Formation of a Dicopper Complex through Self-Assembly in a Comproportionation Reaction , 1999 .
[41] Frank Baumann,et al. Changeover in a multimodal copper(ii) catenate as monitored by EPRspectroscopy , 1997 .
[42] W. Kaim,et al. Pulled Molecular Strings and Stacked Molecular Decks: Chelate‐Ring Formation vs. Metal–Metal Bridging in Dicopper(I) Complexes of 2,2′‐Bipyrimidine with Diphosphine Ligands of Variable Polymethylene Chain Length , 1996 .
[43] W. Kaim,et al. Kupfer – ein “modernes” Bioelement , 1996 .
[44] T. B. Higgins,et al. Model compounds for polymeric redox-switchable hemilabile ligands , 1995 .
[45] Chad A. Mirkin,et al. Ein redoxschaltbarer semilabiler Ligand: Beeinflussung der Koordinationssphäre eines RhI‐Komplexes , 1995 .
[46] Jean-Pierre Sauvage,et al. Electrochemically Triggered Swinging of a [2]-Catenate. , 1994, Journal of the American Chemical Society.
[47] W. Kaim,et al. Ligand-controlled oxidation state ambivalence in copper–quinone complexes. Replacement of N-donor by S-donor ligands favours the copper(I)–semiquinone over the copper(II)–catecholate form , 1994 .
[48] H. Jacobsen,et al. [pi]-acidity of thioethers and selenoethers: Truth or fiction A comparative density functional study , 1993 .
[49] E. Lindner,et al. Coordination chemistry and catalysis with hemilabile oxygen-phosphorus ligands , 1991 .
[50] P. Knowles,et al. A Cu(I)-semiquinone state in substrate-reduced amine oxidases , 1991, Nature.
[51] W. Kaim,et al. Kupfer(I)‐induzierte Bildung einer „organischen”︁ Sandwich‐Struktur – strukturelle Voraussetzungen für eine Lumineszenz von Zweikernkomplexen [(μ‐Bipyrimidin) {Cu(PR3)2}2]X2 , 1989 .
[52] J. Thompson,et al. Orbital symmetries and magnetic interaction between copper(II) ions and the o-semiquinone radical. Magnetic studies of (di-2-pyridylamine)(3,5-di-tert-butyl-o-semiquinonato)copper(II) perchlorate and bis(bis(3,5-di-tert-butyl-o-semiquinonato)copper(II)) , 1987 .
[53] T. Rauchfuss,et al. Metal complexes of hemilabile ligands. Reactivity and structure of dichlorobis(o-(diphenylphosphino)anisole)ruthenium(II) , 1980 .