Design Rules for Membrane-Embedded Voltage-Sensing Nanoparticles

Voltage-sensing dyes and voltage-sensing fluorescence proteins have been continually improved and as a result have provided a wealth of insights into neuronal circuits. Further improvements in voltage-sensing dyes and voltage-sensing fluorescence proteins are needed, however, for routine detection of single action potentials across a large number of individual neurons in a large field-of-view of a live mammalian brain. On the other hand, recent experiments and calculations suggest that semiconducting nanoparticles could act as efficient voltage sensors, suitable for the above-mentioned task. This study presents quantum mechanical calculations, including Auger recombination rates, of the quantum-confined Stark effect in membrane-embedded semiconducting nanoparticles, examines their possible utility as membrane voltage sensors, and provide design rules for their structure and composition.

[1]  Roger Y. Tsien,et al.  Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires , 2012, Proceedings of the National Academy of Sciences.

[2]  P. El-Khoury,et al.  Radiative recombination of spatially extended excitons in (ZnSe/CdS)/CdS heterostructured nanorods. , 2009, Journal of the American Chemical Society.

[3]  Y. Mély,et al.  Fluorescent probe based on intramolecular proton transfer for fast ratiometric measurement of cellular transmembrane potential. , 2006, The journal of physical chemistry. B.

[4]  Uri Banin,et al.  Electric field induced switching of the fluorescence of single semiconductor quantum rods. , 2005, Nano letters.

[5]  Uri Banin,et al.  ZnSe quantum dots within CdS nanorods: a seeded-growth type-II system. , 2008, Small.

[6]  M. Bawendi,et al.  Quantum-confined stark effect in single CdSe nanocrystallite quantum dots , 1997, Science.

[7]  Moonsub Shim,et al.  Double-heterojunction nanorods , 2014, Nature Communications.

[8]  X Michalet,et al.  Photon-Counting H33D Detector for Biological Fluorescence Imaging. , 2006, Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment.

[9]  John Silcox,et al.  Non-blinking semiconductor nanocrystals , 2009, Nature.

[10]  P. Lagoudakis,et al.  Wave function engineering in elongated semiconductor nanocrystals with heterogeneous carrier confinement. , 2005, Nano letters.

[11]  Rafael Yuste,et al.  Imaging Voltage in Neurons , 2011, Neuron.

[12]  J. Nadeau,et al.  FRET between CdSe quantum dots in lipid vesicles and water- and lipid-soluble dyes , 2004 .

[13]  A. Efros,et al.  Random Telegraph Signal in the Photoluminescence Intensity of a Single Quantum Dot , 1997 .

[14]  V. Klimov,et al.  Controlled alloying of the core-shell interface in CdSe/CdS quantum dots for suppression of Auger recombination. , 2013, ACS nano.

[15]  Robert M. Clegg,et al.  Fluorescence lifetime imaging microscopy (FLIM): Spatial resolution of microstructures on the nanosecond time scale , 1993 .

[16]  R. Yuste,et al.  The Brain Activity Map Project and the Challenge of Functional Connectomics , 2012, Neuron.

[17]  M. Jackson,et al.  Hybrid voltage sensor imaging of electrical activity from neurons in hippocampal slices from transgenic mice. , 2012, Journal of neurophysiology.

[18]  Klimov,et al.  Quantization of multiparticle auger rates in semiconductor quantum dots , 2000, Science.

[19]  P. Barbara,et al.  Effect of electric field on the photoluminescence intensity of single CdSe nanocrystals , 2007 .

[20]  Michael Z. Lin,et al.  High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor , 2014, Nature Neuroscience.

[21]  Alexander L Efros,et al.  Suppression of auger processes in confined structures. , 2010, Nano letters.

[22]  Clare E. Rowland,et al.  Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes. , 2015, Nano letters.

[23]  D. Maclaurin,et al.  Optical recording of action potentials in mammalian neurons using a microbial rhodopsin , 2011, Nature Methods.

[24]  L. C. Lew Yan Voon,et al.  Ab initio studies of the band parameters of III–V and II–VI zinc-blende semiconductors , 2005 .

[25]  J. Vela,et al.  "Giant" multishell CdSe nanocrystal quantum dots with suppressed blinking. , 2008, Journal of the American Chemical Society.

[26]  H. Brismar,et al.  Blinking, Flickering, and Correlation in Fluorescence of Single Colloidal CdSe Quantum Dots with Different Shells under Different Excitations , 2013 .

[27]  Shimon Weiss,et al.  Phasor imaging with a widefield photon-counting detector. , 2012, Journal of biomedical optics.

[28]  R. Bourguiga,et al.  Investigation of the radiative lifetime in core–shell CdSe/ZnS and CdSe/ZnSe quantum dots , 2012 .

[29]  S. Weiss,et al.  Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI) , 2009, Proceedings of the National Academy of Sciences.

[30]  E. Kane,et al.  Energy band structure in p-type germanium and silicon , 1956 .

[31]  C. Klingshirn,et al.  Conduction band offset of the CdS/ZnSe heterostructure , 1999 .

[32]  J. L. Movilla,et al.  Auger recombination suppression in nanocrystals with asymmetric electron-hole confinement. , 2012, Small.

[33]  Christophe Danelon,et al.  Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells. , 2006, Angewandte Chemie.

[34]  B. Dubertret,et al.  Towards non-blinking colloidal quantum dots. , 2008, Nature materials.

[35]  M. Isshiki,et al.  Wide-Bandgap II-VI Semiconductors: Growth and Properties , 2017 .

[36]  Jesse D. Marshall,et al.  Optical strategies for sensing neuronal voltage using quantum dots and other semiconductor nanocrystals. , 2013, ACS nano.

[37]  Amiram Grinvald,et al.  VSDI: a new era in functional imaging of cortical dynamics , 2004, Nature Reviews Neuroscience.

[38]  M. Islam,et al.  Interdot interactions and band gap changes in CdSe nanocrystal arrays at elevated pressure , 2001 .

[39]  Paul S. Weiss,et al.  The Brain Activity Map , 2013, Science.

[40]  Shimon Weiss,et al.  Single Molecule Quantum-Confined Stark Effect Measurements of Semiconductor Nanoparticles at Room Temperature , 2012, ACS nano.

[41]  Daniel C. Hannah,et al.  Suppressed blinking and auger recombination in near-infrared type-II InP/CdS nanocrystal quantum dots. , 2012, Nano letters.

[42]  Walther Akemann,et al.  Genetically engineered fluorescent voltage reporters. , 2012, ACS chemical neuroscience.

[43]  M. Häusser,et al.  Electrophysiology in the age of light , 2009, Nature.

[44]  Dmitri V Talapin,et al.  Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. , 2007, Nano letters.